

Analysis of dynamically downscaled climate simulations over the Baltic Sea drainage basin

Future scenarios <u>Björn Claremar</u>, Anna Rutgersson and Anders Omstedt Sopot workshop 24-26 May 2011

1	GCM	SRES	Ensemble	Land	Nutrient loads	GCM bias	Factor addressed
		narrative	member	cover		correction	
1	ECHAM5	A1B	#1	present- day	present-day	none	(baseline scenario)
2	ECHAM5	A1B	#2	present- day	present-day	none	natural variability
3	ECHAM 5	A1B	#3	present- day	present-day	none	natural variability
4	HadCM3	A1B		present- day	present-day	none	climate system
5	CCSM3	A1B		present- day	present-day	none	climate system
6	ECHAM5	A2		present- day	present-day	none	emissions (higher)
7	ECHAM5	B1		present- day	present-day	none	emissions (lower)
8	ECHAM5	A1B	#1	GRAS	present-day	none	land cover change
9	ECHAM5	A1B	#1	present- day	"medium"	none	nutrient loads change
10	ECHAM5	A2		BAMBU	"business as usual"	none	multi-factor, "business as usual"
11	ECHAM5	A1B	#1	GRAS	"medium"	none	multi-factor, "balanced policy"
12	ECHAM5	B1		SEDG	Baltic Sea action plan	none	multi-factor, "environmental"
13	ECHAM5	A2		BAMBU	"business as usual"	yes	bias-corrected version of Scenario 10
14	ECHAM5	A1B	#1	GRAS	"medium"	yes	bias-corrected version of Scenario 11
15	ECHAM5	B1		SEDG	Baltic Sea action plan	yes	bias-corrected version of Scenario 12

Global coupled atmosphere–ocean general circulation models (AOGCMs)

• ECHAM5, 1.875°: A1B (3 runs), A2, B1

Run 1 has same initialization as for other scenarios

HADCM3, 2.5° x 3.75° : A1B
CCSM3, 1.4° : A1B

Our evaluation of control period 1961-2005

Performance in control period (1961–2005)

Conclusions - Control period

Natural variability is well simulated for all scales

- Some biases: clouds and precipitation overestimated
- "Best" model choices, based on means for the catchment area
 - SST / Geostrophic wind speed: ECHAM5 and HadCM3
 - T2 / RH2: ECHAM5 (for trends in E. Go basin ECHAM5r1 bad)
 - Total cloudiness: ECHAM5 and CCSM3
 - Precipitation: HadCM3

<u>Problem</u>: Model sensitivity to greenhouse gases will change scores in future \Box a present weighting not valid

Another solution with its drawbacks: Delta-change method

Delta-change

 Variability of scenario runs are kept but changed
 Based on monthly averages for the period 1961-1990

	Land	Sea
Temperature	E-obs	ERA-40/RCA
Precipitation	E-obs	Raw ERA-40
Cloudiness/radiation	CRU	None

ECHAM 5: A1B, A2, B1 Precipitation based on ratio

Re-analysis data

ERA-40

- Atmospheric model using observations
- Not downscaled: better for precipitation
- Downscaled by RCA3: better for other variables
- E-obs (land), same grid as RCA 0.44°
 - Landbased 3-D (terrain) interpolation of observations
- **CRU, 0.5**°
 - Landbased 2-D? interpolation of observation

Delta-change

Delta-change temperature

gf

-10└

Delta-change precipitation

Future climate simulations 2005-2099

A summary of different scenarios and the effect of delta-change Temperature, wind precipitation

Climate scenarios

- <u>Storyline A1:</u> Rapid economic growth, population peaks in mid-century, new technologies, reduction in regional differences.
- A1B-balance across energy sources. Storyline A2: Heterogeneous world, continuously increasing populations, economic developments regionally oriented. WORST CASE Storyline B1: Service and information economy, improved equity, population as in A1. BEST CASE

Temperature

Maps
Trends or 30 last years
Return values?

Precipitation

Maps
 Trends or 30 years
 Distribution
 Return values
 Inkl. Delta-change

Wind

maps
Significant?
Return values

Conclusions

