

Swedish Meteorological and Hydrolog **Institute and Stockholm University ECOSUPPORT co-workers Annual General Assembly 15 Oct 2009**

Regional climate models: Improving global climate scenarios

Increased resolution — detailed regional forcing Greater number of explicitly resolved processes

Global

Regional

New simulations at SMHI:

1. Hindcast simulation 1961-2007: RCAO/ERA-40

2. Two transient simulations 1961-2099: RCAO/GCM

New compared to BACC: no time slices, IPCC 2007, new model versions

	No	AOGCM		Emission	Horisontal
he Rossby		(Institute, country)		scena rio	resolution (km)
antro ansambla	1	Arpège (CNRM, France)		A1B	50
	2	BCM (NERSC, Norway)		A1B	50
	3				25
	4	CCSM3 (NCAR, USA)		A2	50
	5			A1B	50
	6			B2	50
	7	ECHAM4 (MPI-met, Germa	any)	A2	50
	8			B2	50
	9	ECHAM5 (MPI-met, Germany)		A2	50
	10			A1B	50
	11				50
	12				50
	13				25
	14				12.5
	15			B1	50
	16	HadCM3	ref (Q0)	A1B	50
	17	(Hadley Centre, UK)	low (Q3)		50
All simulations on the	18		high (Q16)		50
with RCA3	19		low (Q3)		25
	20	IPSL-CM4 (IPSL, France)		A1B	50

Different AOGCMs

All simulations on the

•	No	AOGCM (Institute, country)		Emission scena rio	Horisontal resolution (km)
	1	Arpège (CNRM, France)		A1B	50
;	2	BCM (NERSC, Norway)		A1B	50
	3				25
	4	CCSM3 (NCAR, USA)		A2	50
	5			A1B	50
	6			B2	50
	7	ECHAM4 (MPI-met, Germa	any)	A2	50
	8			B2	50
	9	ECHAM5 (MPI-met, Germany)		A2	50
	10		A1B	50	
	11			50	
	12			50	
	13				25
	14			12.5	
	15			B1	50
	16	HadCM3	ref (Q0)	A1B	50
	17	(Hadley Centre, UK)	low (Q3)		50
	18		high (Q16)		50
	19		low (Q3)		25
	20	IPSL-CM4 (IPSL, France)		A1B	50

Different initial conditions

All simulations on the

No	AOGCM (Institute, country)		Emission scena rio	Horisontal resolution (km)
1	Arpège (CNRM, France)		A1B	50
2	BCM (NERSC, Norway)		A1B	50
3				
4	CCSM3 (NCAR, USA)		A2	50
5				
6				
7	ECHAM4 (MPI-met, Germa	ECHAM4 (MPI-met, Germany)		
8				
9	ECHAM5 (MPI-met, Germany)		A2	50
10		A1B	50	
11			50	
12				
13				
14				
15				50
16	HadCM3	ref (Q0)	A1B	50
17	(Hadley Centre, UK)	low (Q3)		50
18		high (Q16)		50
19		low (Q3)		25
20	IPSL-CM4 (IPSL, France)		A1B	50

Different AOGCMs

Different initial conditions

Different model formulation (GCM)

All simulations on the ENSEMBLES grid with RCA3

Νο	AOGCM (Institute, country)		Emission scena rio	Horisontal resolution (km)
1	Arpège (CNRM, France)		A1B	50
2	BCM (NERSC, Norway)		A1B	50
3				25
4	CCSM3 (NCAR, USA)		A2	50
5			A1B	50
6			B2	50
7	ECHAM4 (MPI-met, Germa	any)	A2	50
8			B2	50
9	ECHAM5 (MPI-met, Germany)		A2	50
10			A1B	50
11				50
12				50
13				25
14				12.5
15			B1	50
16	HadCM3	ref (Q0)	A1B	50
17	(Hadley Centre, UK)	low (Q3)		50
18		high (Q16)		50
19		low (Q3)		25
20	IPSL-CM4 (IPSL, France)		A1B	50

Different AOGCMs

Different initial conditions

Different model formulation (GCM)

Different emission scenarios

All simulations on the

Νο	AOGCM (Institute, country)		Emission scena rio	Horisontal resolution (km)
1	Arpège (CNRM, France)		A1B	50
2	BCM (NERSC, Norway)		A1B	50
3				25
4	CCSM3 (NCAR, USA)		A2	50
5			A1B	50
6		B2	50	
7	ECHAM4 (MPI-met, Germany)		A2	50
8			B2	50
9	ECHAM5 (MPI-met, Germany)		A2	50
10			A1B	50
11				50
12				50
13				25
14				12.5
15			B1	50
16	HadCM3	ref (Q0)	A1B	50
17	(Hadley Centre, UK)	low (Q3)		50
18		high (Q16)		50
19		low (Q3)		25
20	IPSL-CM4 (IPSL, France)		A1B	50

Different AOGCMs

Different initial conditions

Different model formulation (GCM)

Different emission scenarios

Different horizontal resolution

All simulations on the ENSEMBLES grid with RCA3

No	AOGCM (Institute, country)		Emission scena rio	Horisontal resolution (km)
1	Arpège (CNRM, France)		A1B	50
2	BCM (NERSC, Norway)		A1B	50
3				25
4	CCSM3 (NCAR, USA)		A2	50
5		A1B	50	
6			B2	50
7	ECHAM4 (MPI-met, Germa	any)	A2	50
8			B2	50
9	ECHAM5 (MPI-met, Germany)		A2	50
10			A1B	50
11			50	
12				50
13				25
14				12.5
15			B1	50
16	HadCM3	ref (Q0)	A1B	50
17	(Hadley Centre, UK)	low (Q3)		50
18		high (Q16)		50
19	low (Q3)			25
20	IPSL-CM4 (IPSL, France)		A1B	50

Biases in the recent past climate (1961-1990): winter (DJF) mean temperature and MSLP

°C RCA(ERA40, GCM)-ENSOBS

Source: Erik Kjellström, SMHI

Biases in the recent past climate (1961-1990): summer (JJA) mean temperature and MSLP

Source: Erik Kjellström, SMHI

Seasonal mean 2m air temperature at Gotland Deep 1980-2006 – downscaling results using RCA

Seasonal mean 10m wind speed at Gotland Deep 1980-2006 – downscaling results using RCA

Seasonal mean precipitation at Gotland Deep 1980-2006 – downscaling results using RCA

Mean 2m air temperature (winter), 1980-2006

Observations

RCA/ERA40

RCA/ECHAM5

Mean 2m air temperature (summer), 1980-2006

Observations

RCA/ERA40

RCA/ECHAM5

Mean 2m air temperature (summer), 1980-2006

Observations

RCAO/ERA40

RCAO/ECHAM5

Climate change (2071-2100 vs 1961-1990): winter (DJF) mean temperature and MSLP

SMHI

Climate change (2071-2100 vs 1961-1990): summer (JJA) mean temperature and MSLP

SMHI

Mean seasonal cycles of SST (in °C) averaged for the Baltic Sea

Black: Hindcast 1961-2007 Red: RCAO/ECHAM5 A1B Blue: RCAO/HadCM3 A1B Solid: Control period 1970-1999 Dashed: Scenario period 2070-2099

Filtered runoff 1970-2090 (m³/s)

Black: Observations Red: RCAO/ECHAM5 A1B Blue: RCAO/HadCM3 A1B

Black: Hindcast Red: RCAO/ECHAM5 A1B Blue: RCAO/HadCM3 A1B

Changes of bottom oxygen concentrations (in ml/l) RCAO/HadCM3 A1B

Annual mean

Winter (DJF)

Summer (JJA)

Changes of bottom oxygen concentrations (in ml/l) RCAO/ECHAM5 A1B

Annual mean

Winter (DJF)

Summer (JJA)

Annual mean phytoplankton concentration (in mgChl m⁻³) vertically averaged over the upper 10 m HadCM3 A1B

Present climate 1970-1999

Future climate 2070-2099

Annual mean phytoplankton concentration (in mgChl m⁻³) vertically averaged over the upper 10 m ECHAM5 A1B

Present climate 1970-1999

Future climate 2070-2099

Summary

- 1. The quality of the GCMs differs significantly. As a starting point we have selected ECHAM5 and HadCM3. We performed transient simulations with realistic control climate for the Baltic Sea.
- 2. Improved summer SSTs using the coupled RCAO model.
- 3. We found increased runoff but the mean wind speed changes are statistically not significant. Hence salinity decreases are smaller than in earlier scenario simulations.
- 4. Overall oxygen decrease but slight increases in ECHAM5 driven scenario simulations in intermediate depths.
- 5. Increased phytoplankton concentrations in both scenario simulations.
- 6. Next steps: runoff from a hydrological model HYPE, higher resolution in RCA (25 km)

First results based on RCO-SCOBI and IPCC 2001:

- 1. Future climate might be characterized by increased water temperatures, increased mixing, and (reduced loads) in the Baltic Proper
- 2. Increased water temperatures => decreased oxygen concentrations in all regions
- Increased mixing => increased oxygen concentrations below the halocline
 reduced winter DIP and reduced denitrification (i.e. increased DIN)
- 4. Increased water temperature and increased mixing => increased (decreased) phytoplankton concentrations in the south-western (northern) Baltic Proper
- 5. In future climate the "business-as-usual in agricultural practices" scenario may have larger impacts than in present climate
- 6. The BSAP will likely reduce the phytoplankton concentrations also in future climate