Ecosupport, first results from RCO based numerical simulations

FoUo, SMHI

Ecosupport Workshop, October 15th 2009, Norrköping

FoUo Ecosupport, first results from RCO based numerical simulations

イロト イポト イヨト イヨト

Outline

Porcing dataset

3 Results

- Sea Surface Height
- Salinity & Salt Content
 - Surface Salinity
 - Bottom Salinity
- Sea ice

Conclusions

イロト イポト イヨト イヨト

Introduction

Outline

The Ecosupport Project

- Sea Surface Height
- Salinity & Salt Content
 - Surface Salinity
 - Bottom Salinity
- Sea ice

< □ > < □ > < □ > < □ > < □ >

Introduction

Goal

• Our main task for our WP...

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト Ecosupport, first results from RCO based numerical simulations

590

Э

Introduction

FoUo

Goal

- Our main task for our WP...
- Provide a climate simulation of the Baltic Sea from physical and biogeochemical points of view

Sac

Outline

The Ecosupport Project

Porcing dataset

• Sea Surface Height

- Salinity & Salt Content
 - Surface Salinity
 - Bottom Salinity
- Sea ice

Conclusions

< □ > < □ > < □ > < □ > < □ >

• Atmospheric forcing

Having a forcing dataset requires...

・ロト ・日本 ・モト ・モト

Ξ 9 Q ()

- Atmospheric forcing
- Lateral boundary conditions

Having a forcing dataset requires...

・ロト ・日ト ・ヨト ・ヨト

E

Having a forcing dataset requires...

- Atmospheric forcing
- Lateral boundary conditions
- Runoff

・ロト ・日ト ・ヨト ・ヨト

590

E

Having a forcing dataset requires...

- Atmospheric forcing
- Lateral boundary conditions
- Runoff
- Nutrient loads
- ... until year 2100

・ロト ・日ト ・ヨト ・ヨト

590

Atmospheric forcing

• Atmospheric forcing

FoUo Ecosupport, first results from RCO based numerical simulations

・ロト ・日本 ・モト ・モト

E

Atmospheric forcing

• Atmospheric forcing

 \implies RCA 3 forced by ECHAM 5 at the latteral boundary conditions, interpolated on the RCO grid

FoUo Ecosupport, first results from RCO based numerical simulations

イロト イボト イヨト イヨト

3

• Runoff dataset

FoUo Ecosupport, first results from RCO based numerical simulations

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

E

Runoff

- Runoff dataset
- Evaporation -Precipitation extracted from RCA 3 for each sub-basin of the Baltic Sea

< □ > < □ > < □ > < □ > < □ >

Sar

Runoff

- Runoff dataset
- Evaporation -Precipitation extracted from RCA 3 for each sub-basin of the Baltic Sea
- For each month, the runoff of a basin is assumed to depend on E-P of the 12 months before

イロト イポト イヨト イヨト

Runoff

- Runoff dataset
- Evaporation -Precipitation extracted from RCA 3 for each sub-basin of the Baltic Sea
- For each month, the runoff of a basin is assumed to depend on E-P of the 12 months before
- The present climate runoff is supposed to be a "unit" against which runoff in other climates can be estimated

Runoff

• If we apply this simple model to RCA3-ECHAM5 climate simulations...

イロト イポト イヨト イヨト

nac

FoUo

Runoff

- If we apply this simple model to RCA3-ECHAM5 climate simulations...
- and also apply some statistical corrections...

イロト イポト イヨト イヨト

FoUo

Runoff

- If we apply this simple model to RCA3-ECHAM5 climate simulations...
- and also apply some statistical corrections...
- ..we get an increase of about 4000 m³ at the end of the century

イロト イボト イヨト イヨ

Lateral Boundary Condition

< □ > < □ > < □ > < □ > < □ >

590

Lateral Boundary Condition

• Sea surface height in Kattegat

FoUo Ecosupport, first results from RCO based numerical simulations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Lateral Boundary Condition

- Sea surface height in Kattegat
- computed from meridional sea level pressure gradient over western europe and some correlation coefficients

イロト イポト イヨト イヨ

Lateral Boundary Condition

- Sea surface height in Kattegat
- computed from meridional sea level pressure gradient over western europe and some correlation coefficients
- the sea level pressure gradient is too smooth in ECHAM5 (probably because of the 50km resolution), so we boost it up using statistical corrections

Results

Outline

3 Results

- Sea Surface Height
- Salinity & Salt Content
 - Surface Salinity
 - Bottom Salinity
- Sea ice

< □ > < □ > < □ > < □ > < □ >

Sea Surface Height Salinity & Salt Content Sea ice

SSH at Landsort

Sea Surface Height Salinity & Salt Content Sea ice

SSH at Landsort - PDF

イロト イポト イヨト イヨト

Sea Surface Height Salinity & Salt Content Sea ice

Mean salinity for the entire domain

Red : hindcast simulation, **Green** : climate forcing only for atmospheric forcing, **Blue** : climate forcing for atmospheric forcing and ssh, **Black** : Full climate forcing simulation

イロト イポト イヨト

Sea Surface Height Salinity & Salt Content Sea ice

Surface salinity variability

Differences between the two.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Surface salinity variability

Differences between the two.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Surface salinity variability

Io Ecosupport, first results from RCO based numerical simulations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Surface salinity variability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Bottom salinity variability

Differences between the two.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Bottom salinity variability

Differences between the two.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Bottom salinity variability

Ecosupport, first results from RCO based numerical simulations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

Bottom salinity variability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ♪

Sea Surface Height Salinity & Salt Content Sea ice

FoUo

Blue : hindcast, Red : climate

< □ > < □ > < □ > < □ > < □ >

590

Sea Surface Height Salinity & Salt Content Sea ice

FoUo

Blue : hindcast, Red : climate

< □ > < □ > < □ > < □ > < □ >

590

Sea Surface Height Salinity ど Salt Content Sea ice

Mean S, T for the computation domain

・ロト ・日ト ・ヨト ・ヨト

590

э

Conclusions

Outline

- Sea Surface Height
- Salinity & Salt Content
 - Surface Salinity
 - Bottom Salinity
- Sea ice

Conclusions

< □ > < □ > < □ > < □ > < □ >

• A small issue with atmospheric forcing because of the 50km resolution

・ロト ・部ト ・ヨト ・ヨト

Ξ 9 Q ()

- A small issue with atmospheric forcing because of the 50km resolution
- But the correction of the ssh at the entrance seems to compensate the loss of variability

= 990

- A small issue with atmospheric forcing because of the 50km resolution
- But the correction of the ssh at the entrance seems to compensate the loss of variability
- The runoff seems to be correct but some hydrology model outputs shall be used later on

イロト イボト イヨト イヨト

3

- A small issue with atmospheric forcing because of the 50km resolution
- But the correction of the ssh at the entrance seems to compensate the loss of variability
- The runoff seems to be correct but some hydrology model outputs shall be used later on

イロト イボト イヨト イヨト

3