
# Assessment of Climate Change for the Baltic Sea Basin - The BACC Project -22-23 May 2006, Göteborg, Sweden



# Detection of Past and Current Climate Change 3) Hydrology: Runoff, Ice and Snow

#### River runoff in winter has increased

- Positive trends in annual values of river runoff for 1920-2002 were detected for several rivers in Denmark, Southern Sweden and Lapland.
- In Russia, in some basins located south and southwest of the Gulf of Finland, annual runoff for 1978-2002 increased by about one third, compared to long-term values.
- Significant positive trends were rather common in the entire north of the Baltic Sea basin in winter river runoff (Dec-Feb) during the period 1941-2002.
- Winter runoff from Finland into the Baltic Sea has increased at 785 m<sup>3</sup> per second during the period 1912-2003.
- In the Russian part of the Baltic Sea basin, winter runoff has increased remarkably: 40-140% in the basins south and southwest of the Gulf of Finland, and 6-44% in the Karelian Isthmus.
- The increase of wintertime runoff has also been observed in Estonia, Latvia and in Belarus (Fig. 2).
- A warming trend has been observed in the Finnish, Estonian and also in the Byelorussian lakes (Fig. 3).



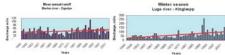
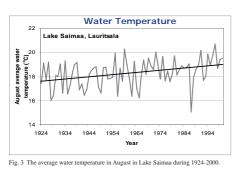




Fig. 2 An example of data series for mean annual runoff and mean winter runoff (Dec-March) in the Russian territory of the Baltic Drainage. The observation site of Zapolye is located at 58° 03' N and 30° 06' E; Kingisepp at 59° 23' N and 28° 36' E.



## Ice cover duration, extent and thickness in lakes and rivers have decreased

- Ice melt timing in rivers in Russia occurs 15-20 days earlier than in the 1950s.
- Ice cover duration shows a strong negative trend in lakes in the northern part of the Polish Lowland (1961-2000), in lakes in Russia (Fig. 4), and for some lakes in central and southern Finland since the middle of the 19th century (Fig. 5).
- Maximum ice cover thickness decreased in Polish and Russian lakes (Fig. 6).
- Maximum ice cover thickness decreased by 15-20% in Russian rivers by the end of the 20<sup>th</sup> century (Fig. 7).
- Maximum ice cover thickness mostly increased in eastern and northern Finland and decreased in southern Finland.

#### Ice Cover

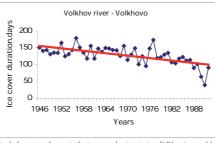



Fig. 4 Long-term changes in the ice cover duration in river Volkhov (prepared by V.Vuglinsky).

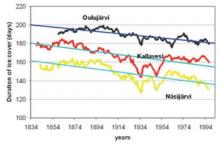
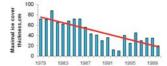




Fig. 5 Duration of the ice cover in Lake Näsijärvi, Lake Kallavesi and Lake Oulujärvi (11-year moving average), Finland (Korhonen, 2004).

|   |    |   |    |    |     |   | 20             |
|---|----|---|----|----|-----|---|----------------|
| Å | A  |   | 1/ | ١. | Λ   |   | \$0<br>40<br>7 |
|   | VV | V | W  | 1A | ~++ | 7 | 20             |

Fig. 6 Maximal ice cover thickness at two lakes in the Polish Lowland

### Perovka river- Goncharovo



years Fig. 7 Long-term changes in maximal ice cover thickness at river Perovka, European

#### Snow cover duration and thickness have decreased

- Snow cover duration and water equivalent in the southern parts of all Fennoscandian countries decreased, but the opposite trend was observed in the north.
- Snow cover increased in the Scandinavian mountains. Wintertime snowmelt in western and southern parts of Finland intensified towards the end of the 20<sup>th</sup> century, while maximum snow storage increased in eastern and northern Finland (Table 1).
- More snow was measured in the north of Sweden and in the Norwegian mountains, while snow depth decreased in the southern parts of Sweden.
- Snow cover duration in Latvia decreased on average by 12 days during 1945-1996, but at a statistically significant level only at three stations.
- Permanent snow cover in Lithuania in the last decades of the 20<sup>th</sup> century tends to occur earlier and to disappear earlier than in the middle of the century.
- Duration of snow cover in Estonia decreased during the recent 4 decades by more than 1 day per year in some regions, the observed decrease was pronounced in the western and central parts.
- In Poland, snow cover duration (by -4 days/10 years) and depth (by -13 cm/10 years) shows a slight negative tendency during 50 investigated winter seasons.
- An increasing tendency in the variability of snow cover depth and duration was observed in the lowland area of Poland since the 1950s or 1960s (Fig. 8).
- Three areas with different tendencies in snow cover duration were identified in the central and northern parts of the Baltic Sea basin (Fig. 9).

### **Snow Cover**

Table 1. Mean maximum water equivalents of snow (Lmax) in six drainage basins in Finland

| Drainage basin | Lmn (mm) 1961-1990 | Lmax(mm) 1991-2005 | Difference (%) |
|----------------|--------------------|--------------------|----------------|
| Vantaanjoki    | 109                | 77                 | -29            |
| Kyrönjoki      | 92                 | 70                 | -24            |
| Vuoksi         | 146                | 154                | +5             |
| Oulujoki       | 162                | 186                | +15            |
| Kemijoki       | 175                | 195                | +11            |
| Destricts      | 140                | 179                | +10            |

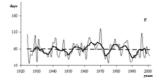



Fig. 8 Areal mean duration of snow cover in Poland during 1925-2001 (5- year moving mean series and linear trend line) (Falarz ,2004).



Fig. 9 Spatial variability of trends of the duration of snow cover (days per year) 1936-2000 (Kitaev et al, 2005)





VETENSKAPSAKADEMIEN Tel River Berlande Australie Of KURCH berlaha Nationalisation for KURP of WCPP Tel Josefak Manager Company for the WCPP S Eliow

