

River runoff is projected to increase in the north and decrease in the south with distinct changes in seasonal variation

Shown here are selected results using a large scale hydrological model, HBV-Baltic, that was driven by some 20 simulations using 10 different RCMs. Comparing scenario simulations of 2071-2100 to control simulations representing 1961-1990, some conclusions from these hydrological studies follow:

- · Annual river runoff would increase in the northernmost catchments of the Baltic Sea basin and decrease in the southernmost catchments.
- Projected summer river runoff shows a decrease of as much as 20%, while winter runoff shows an increase of up to 50%, on average for the total basin
- The projected occurrence of medium to high river . runoff events shows a higher frequency.
- The projected magnitude of high runoff events shows no pronounced increase on the large scale.

The Baltic Sea is projected to become warmer and have less ice cover

Detailed studies are shown using four projections from a regional coupled atmosphere-ocean model, RCAO, based on two GCM simulations and two SRES scenarios. Additional projections were performed using an ocean only model, RCO. Comparing projections of 2071-2100 to control simulations representing 1961-1990, some conclusions from these oceanographic studies follow:

- · Mean annual sea surface temperatures are projected to increase by some 2 to 4°C.
- · Ice extent in the sea would then decrease by some 50 to 80%.
- · Average salinity of the Baltic Sea is projected to decrease between 8 and 50%, but uncertainty for this is large
- · Risk for coastal inundation would increase most along the eastern and southern shores of the Baltic Sea.

0

Fig. 6: Median profiles of salinity and age at Gotland Deep: RCO hindcast simulation for 1961-1990 (black solid line, shaded areas indicate the range between the first and third quartiles) and four scenario simulations for 2017-1200 (otted line: RCO-HZ, dashed line: RCO-HZ, dash-dotted line: RCO-E/B2, long-dashed line: RCO-E/A2), (Adapted

Fig.4: Percent volume change in river discharge from HBV-Baltic simulations using RCM scenarios for 2071-2100 compared to1961-1990. This is summarised by season, winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Each bar represents the range of results between the simulations driven by HadAM3H (H/A2, 10 simulations; H/ B2, 4 simulations), and by ECHAM4/OPYC3 (E/A2, 2 simulations); E/B2, 2 simulations). (Created with results from Graham, 2004 and Graham et al. 2006b.)

Sea Ice Extent Projections

onal downscaling simulations of ? scenario (bottom left), and A2 Fig. 5: Mean number of ice days averaged for regional d HadAM3H and ECHAM4/OPYC3: control (top), B2 scen scenario (bottom right). (Adapted from Meier et al., 2004a.)

1: Mean river discharge from His V-Battic for KC.M-A2 Scenarios, unventoy Haurawith, 10 RCMs) and ECHAM4/OPYC3 (right; 2 RCMs). The scenarios represent fut mate for the period 2071-2100 compared to the control period 1961-1990. (Adaptate for the period 2071-2100 compared to the control period 1961-1990. climate for the period 2071 from Graham et al., 2006b.)

May Jun Jul Aug Sep

lay Jun Jul Jun Sen Ort

Gulf of Riga

Baltic Proper

Total Baltic Se

e from HRV-Baltic for RCM-A2 scenarios driven by HadAM3H

Gulf of Finland

Any May Jun Jul Aug

Gulf of Riga

Baltic Proper

Total Baltic Sea Drainage Basin

12000

RCM HIA2 mea

Sea Surface Temperature Projections

Fig.2: Mean monthly sea surface temperature change: RCAO-H/B2 (blue solid line), RCAO-H/A2 (black solid line), RCAO-E/B2 (green solid line), and RCAO-E/A2 (red solid line). Dashed lines denote the corresponding RCO scenarios. (From Meier, 2006.)

Sea Level Rise and Surge Projections

Fig. 3: 100-year surge (in cm) of the hindcast experiment using RCO (upper left panel) Fig. 3. Not-year sugge (in thir) of the immediate experiment using RCO (upper let (panel)) relative to the mean sea level 100-1998 and 3 selected regional scenarios of the 100-year surge: "lower case" scenario (RCO-HB2) with a global average sea level rise of 9 cm (upper right panel), "ensemble average" scenario with a global average sea level rise of 48 cm (lower left panel), and "higher case" scenario (RCO-HZA) with a global average sea level rise of 88 cm (lower right panel). (From Meier, 2006.)

GÖTEBORG UNIVERSITY

FIMR