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Preface

This Second Lund Regional-scale Climate Modelling Workshop is a follow-up to the first regional-
scale climate modelling workshop’ held in Lund, Sweden in 2004. The overall theme of the first work-
shop was “High-resolution climate modelling: Assessment, added value and applications.” Now, five
years later, it is again time to take stock of the scientific progress in the wide range of topics that
regional climate modelling spans. These range from theoretical understanding and parameterisation of
meso-scale and regional processes in the atmosphere/ocean/land surface/biosphere system, numerical
methods and links between regional climate modelling and global climate/earth system models as well
as numerical weather prediction models, evaluation of models using various observational datasets,
model intercomparison and ensemble-based methods, production and utility of regional climate
scenarios, and the application of regional climate modelling output for impact studies.

This Second Lund Regional-scale Climate Modelling Workshop summarises developments and
progress achieved in the last five years, discusses open issues and focuses on expected future
challenges related to regional climate modelling. Thus, the overall theme for this workshop is 2/st
Century Challenges in Regional-scale Climate Modelling.

The interest in this workshop was overwhelming. We received over 170 paper contributions from
scientists all over the world; a total of about 220 participants from 43 countries registered for the
workshop. As time is a tight resource in a 5-day workshop, many high-quality papers which were
originally intended as oral presentations had to be realigned as posters. Therefore it is our policy not to
distinguish between oral and poster presentations in this proceedings volume. It contains abstracts of
all papers presented at the workshop, ordered alphabetically within sessions. Half a day of the
workshop is dedicated to group and breakout sessions, some of which are open.

The workshop is organised by the Swedish Meteorological and Hydrological Institute (SMHI), Lund
University, the Danish Meteorological Institute (DMI) and GKSS-Forschungszentrum Geesthacht
GmbH (GKSS), with support by the International BALTEX Secretariat. The scientific committee was
responsible for preparing the workshop content and the scientific programme, while practical and
logistic arrangements were managed by the organising committee (see preceding page).

We are grateful for a generous endorsement by the following organisations: the World Meteorological
Organization (WMO); the World Climate Research Programme (WCRP); the WCRP Global Energy
and Water Cycle Experiment (GEWEX); the U.S. National Science Foundation (NSF); the
ENSEMBLES project co-financed by EU FP-6; the North American Regional Climate Change
Program (NARCCAP); the Swedish Research Council for Environment, Agricultural Sciences and
Spatial Planning (Formas); the Swedish Environmental Protection Agency (Swedish EPA); and the
GEWEX-CEOP Regional Hydroclimate Project BALTEX (Baltic Sea Experiment).

This workshop brings together scientists from a wide range of disciplines that share a common interest
in regional climate models. We hope that the interdisciplinary programme and the truly international
group of participants will stimulate the exchange of views and discussions, and provide a fertile
ground for future research directions and new collaborations.

April 2009

Burkhardt Rockel, Lars Barring, and Marcus Reckermann

Editors

" http://www.nateko.lu.se/Elibrary/LeRPG/5/LeRPG5Article.pdf
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1. Introduction

The present study examines the impact of various large-
scale spectral nudging (SN) configurations on Canadian
RCM (CRCM) simulations. The objective is to notice any
secondary effects from the application of SN such as a
possible reduction of the model's ability to develop small-
scale features. A broad series of CRCM experiments is
carried out over North America; each experiment, performed
for a given SN configuration, consists of four ensembles of
15 runs corresponding to four different domain sizes. In
order to evaluate the effects of an “extreme nudging”, an
additional experiment was carried out nudging the CRCM
with the maximum strength of the SN - equivalent to a
replacement of the largest waves at all levels.

This study reveals differences in CRCM’s behaviour to
reproduce regional characteristics when SN has been added
to the model driving. SN has diminished in general the
model’s internal variability (IV), but noticeable effects on
statistics of extremes and estimation of simulated
precipitation on large domains has been noticed.

2. CRCM Large-Scale Nudging

The present study uses Version 3.6.1 of the CRCM (Caya
and Laprise, 1999) that has an option for SN, in addition to
the standard Davies LBC treatment (Riette and Caya, 2002
Denis et al. 2002). The current CRCM-SN has three
adjustable parameters of SN: the length scale beyond which
SN is applied, the maximum strength of the SN (e<,,4), and
the lowest model level (L,) below which no SN is applied.
The SN strength < (defined as the fraction of CRCM field
that is replaced by the re-analyses at each time step) is taken
to vary linearly from 0 (corresponding to L)) to o<y, (at the
uppermost model level). The SN can be applied to any
model variable; in this study, it is applied to the horizontal
wind components only. Figure 1 shows the various profiles
of SN used in this paper.

3. Simulation Set-Up

The experiments, performed for different configurations of
SN, consist of ensembles of several members (generally 15)
generated for four different domain sizes. One experiment is
performed without SN (e<,,,,=0); three experiments are made
with the same o<,,=0.05 but different L, (500, 700 and 850
hPa); a fifth experiment is performed with a uniform value
of oc=oc,. =1 at all model levels. In this ”full SN case, the
large scales of the CRCM are entirely replaced by those of
the re-analyses, at all levels from the surface to the model lid
(see Fig.1); due to the particularly weak IV, only 10-member
ensembles are integrated in the full SN experiment.

All integrations from each ensemble were initialized one day
apart, starting the 0000 UTC 5 May 1993 up to the 0000
UTC 20 May 1993; all simulations end on 0000 UTC 1%
September 1993, so that all ensemble members for different
domain sizes overlap for the full three months of June-July-
August 1993, with a spin-up period varying from 11 to 25
days. The integrations share exactly the same LBC for

atmospheric fields and the same prescribed SST and sea-
ice coverage for the ocean surface (see Table 1).
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Figure 1. The five CRCM experiments.

L Number Domaine Ensemble
Test Experiment 0 Qi (%) of . members
(hPa) Ensembles Size
40x140
SN from 500 hPa- 140 15
. 120120 15
level to model lid 500 0.05 4
(500 hPa-SN) 100x100 15
80x80 15
140x140 15
SN from 700 hPa- 120x120 15
level to model lid 700 005 4 100x100 15
(700 hPa-SN) 80x80 15
140x140 15
SN from 850 hPa- ’
. 120x120 15
level to model lid 850 0.05 4
(850 hPa-SN) 100x100 15
80x80 15
SN from the 140x140 10
ground to model 120x120 10
lid, at all levels 1000 ! 4 100x100 10
(Full-SN) 80x80 10

Table 1: Synthesis of the experiments performed.

4. Influence of SN on Internal Variability

The internal variability of the model (IV) is usually
estimated by measuring the spread among the ensemble
members during the integration period (standard
deviation). According to previous studies, the IV of an
RCM is sensitive to domain size: larger domains develop
large IV while small domains are associated with small IV
(see Alexandru et al. 2007). The present study shows that
a significant SN applied to the model not only reduces the
amplitude of IV, particularly true for the large domain
sizes, but it also reduces the sensitivity of IV to domain
size; the full SN almost suppresses the IV of the model
independently on domain size.



5. Influence of SN on the Ensemble Mean

The variability of the seasonal mean (IVS) was estimated as
the square root of the variance between individual member
seasonal averages. In general, as for IV, the IVS tends to
decrease with increasing SN, more significantly for the
geopotential height on the largest domain, where IVS values
are considerably lower, even with the weak 500 hPa-SN. As
expected, the IVS reaches its smallest values in the full SN
case with a negligible sensitivity to domain size.

After analyzing the spread between seasonal means of the
members in the ensembles (which we termed IVS), we
studied the effect of SN on the ensemble mean of different
domain sizes. Study shows that the impact of SN on the
ensemble mean pattern is quite pronounced for the 140-by-
140 domain and much reduced for the smaller 100-by-100
domain when we compare to without-SN case (taken as a
reference). This suggests that Davies’s control (1976) may
be just as effective as SN for small domains. We have also
noticed that for stronger SN, there is little variation of the
ensemble mean as a function of domain size. Thus, similar
results may be obtained by employing large SN regardless of
the domain size or, alternatively, by avoiding SN when
working with small domains.

6. Influence of SN on Bimodal Solutions

For the largest domains, where the impact of SN is the
largest, a difference has been noted between the results
without SN (Alexandru et. al. 2007) and those with SN
concerning bimodal behavior of the ensemble. For the case
without SN, the 15 members appear to separate into a group
of 5 members producing a low-pressure system over the
ocean, close to the Canadian Atlantic Region, and another
group of 10 members showing a high-pressure system over
the same area and an intense precipitation trough close to the
US East Coast (see Alexandru et al. 2007). We noticed that
when the degree of SN applied to the model is progressively
increased, the effect is to foster the development of the
solution that is closest to the observed data.

7. Influence of SN on Precipitation Extremes

We note that for the runs without SN on the 140-by-140
domain the largest extremes occur from 10" to 15™ of July
1993, associated with the intense precipitation trough given
by the group of 10 simulations in the bimodal behaviour of
the ensemble, as discussed in the above paragraph. The
magnitude of this maximum is progressively attenuated as
the degree of SN 1is progressively increased. Similar
behaviour is noted for the 120-by-120 domain: precipitation
extremes decrease in number and intensity as the degree of
SN is progressively increased.

8. Influence of SN on Power Spectra

When a spectral analysis is performed, the results with 500
hPa-SN show little difference with respect to those
without SN, with the exception of the longest
wavelengths. As was shown in Separovic et al. (2008),
long wavelengths at low altitudes tend to be overestimated
in CRCM simulations, and SN reduces this
overestimation. The configuration with 850 hPa-SN shows
a decrease in spectral variance in all wavelengths except in
the 200 to 400 km range where it is comparable with the
configuration without SN. When full-SN is applied, a very
important decrease in spectral variance affects all
wavelengths.

9. Conclusion

The general conclusion of this research suggests that SN
has, on balance, more positive than negative impacts. On
the one hand, SN results in a reduction of IV, reduction of
simulation dependence to domain size, and improvement
of time means (or at least making them closer to driving
data). On the other hand, SN results in a reduction of
precipitation maxima and spectral power in the vorticity
field, which could be associated to a decrease in the
intensity of cyclones. While finding an optimal setup for
SN is still elusive, - there are still lingering questions
regarding the appropriate nudging intensity and vertical
profile, variables to be affected, etc. - a moderate level of
SN has been shown to be beneficial.
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1. Introduction

The intention of this work was the building of the climate
data sets for the territory of Latvia, i.e. the eastern Baltic
region. The required data sets were at least temperature and
precipitation time series with reasonable spatial resolution
which might be considered as characteristic for
contemporary climate and climate change scenarios B2 and
A2. The further usage of the data series (not covered in this
abstract) was foreseen for the assessment of the impact of
the climate change on the Latvian inland and coastal water
environment.

Authors considered the set of RCM computations publicly
available within the framework of PRUDENCE project. The
method of comparison of RCM calculation results with the
observed data series was proposed. The considered RCMs
were ranked according to this comparison. The typical
discrepancies between the modeled and observed
temperature and precipitation data series were revealed. The
method of the histogram equalization was proposed allowing
processing of the RCM output, and yielding data series
which statistically does not differed from the observed data
series for the control time period (contemporary climate).
The correction method was applied also for RCM
calculations of B2 and A2 cliamate scenarios.

2. Comparison RCM vs. Observations

We considered the collection of the RCM calculations
organised in a web-accessible database at Danish
Meteorological Institute under EC 5th FP research project
“PRUDENCE” EVK2-CT2001-00132 (prudence.dmi.dk).
We considered 21 different model for the control period
1961-1991 characterising the contemporary climate. The
observations of air temperature and precipitation by Soviet
Hydrometeorlogical Agency (www.meteo.ru) in Eastern
Baltic area (i.e. in and near the territory of Latvia, see Fig.1)
were used. We conisdered 14 observattion stations in
Estonia, Russia, Belorus, Lithuania and Latvia. The daily
values of all 21 model and 14 observation stations were
used.

The penalty function K; describing the deviation of each i-th
RCM from the meteorological observations was constructed.
We aimed in evaluation of model accuracy in terms of
temperature, precipitation, their monthly and interannual
variation, and spatial distribution. Therefore we used four
parameters for construction of penalty function: monthly
mean temperatures T, monthly net precipitation p, and
standard deviation of T, p during the reference 30-year
period at all stations. All parameters were normalised to
equal their weights. The calculation of penalty function for
each RCM allowed for ranking of RCMs according to their
agreement with observations in Eastern Baltic region.

Generally, all models reasonably represent the seasonal
cycle of temperature, overestimate winter precipitation and
underestimate summer precipitation in the study area. The
comparison of the observations and RCM, as well as climate
change predictions by RCM for Riga is illustrated in Fig. 3.
The difference between the model and observations (0.8

degC and 164 mm) is not critical, however one must be
careful interpreting the estimated climate change
scenarious by RCM, i.e. direct comparison of observations
with B2 and A2 calculations may yield to overestimation
of expected T and p changes.
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Figure 1. The observation stations and selected
nodes of RCM (SMHI HCCTL) calculation grid
over the territory of Latvia.

3. Method of Histogram Equalization

We propose a method of RCM data correction, based on
the shifting the occurrence distribution of particular daily
parameter (temperature or precipitation).

Cumulative probability

/ 0101
—

-30.0 -25.0 -20.0 -15.0 -10.0 5.0 0.0 5.0
Temperature, degC

—O0BS —REF

Figure 2. Cumulative probability of temperature
(i.e. percentage of occurrence of temperatures below
given temperature) for 15-Jan at Riga. Observations
and RCM data for reference period.

(1) Two cumulative probability curves — one of the
observed data, and one of RCM data — were constructed
for each day-of-the-year, for each parameter in each
observation station. The data within moving slot of time



(+/- 5 days) were used to increase the number of events to
330 (30 years times 11 days) for each curve. Data was
randomly perturbed to ensure smoothness of probability
curves.

(2) For each value of model data (say T) we found the
probability f(T). We then find the observed temperature T
for which f(T*):f(T), and assume that model temperature
correction for T is equal to T"-T. Thus, the temperature
correction is a function of model temperature, and is given
by

AT =(T-T" )‘f(T>:f(T‘)

See the example of the temperature correction for typical
winter day in Fig. 2. Correction ensures that the model daily
temperatures in the range [-17;+2] degC are decreased to
match occurrence of cold events, whilst the higher daily
temperatures are increased.

(3) The correction functions of p.(2) were found for each
day, for each parameter, and at each observation station.
They were spatially interpolated to cover the model domain
and applied for the correction of the RCM data. Thus, the
dataset “modified RCM data for reference period” was
created; it contains the climate signal characteristics from
RCM, and in the same time has the statistical properties of
the observed data.

(4) The same correction functions of p. (2) were applied for
the RCM scenario results, yielding datasets “modified RCM
data for climate change scenarios B2 and A2”. However,
authors at this stage cannot provide arguments defending the
validity of this approach.
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Figure 3. Annual mean temperature and net
precipitation for Riga: observations (OBS), RCM
calculations for reference period (REF), scenarios B2
(B2) and A2 (A2), and respective modifications of
RCM output (MODREF, MODB2, and MODA?2)

The T-p plot, indicating the results of the RCM data
correction via the histogram equalization is shown in Fig. 3.
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1. Background

Regional climate models (RCM) are used to add high-
resolution information to climate scenarios obtained from
global circulation models and from re-analyses.

It is usually assumed that the RCM are able to keep the large
scale features of their driving GCM, in particular the large
scale circulation, and that they are also capable to add spatial
details at the scales not resolved by the GCMs. These two
assumptions are the most basic requirements in the
application of the “one-way” nesting approach commonly
used in the dynamical downscaling of climate scenarios.
However, a quantitative evaluation of the degree of
consistency with the driving conditions and a proper
identification and assessment of the mesoscale contribution
added by the RCMs are not frequently included in RCM
studies. To study these assumptions, the RCM and GCM
spatial scales need to be separated; this could be done
quantitatively by designing and applying spatial filters
defined on the RCM limited area grid.

This work is based on two spatial filters designed for limited
areas which have been recently introduced (Denis et al,
2002, Feser and Von Storch, 2005). These tools are
currently being used to assess the consistency with the GCM
and the RCM added value of the ENSEMLES set of RCM
integrations.

2. Spatial Filters

The standard way of separating spatial scales is the
application of Fourier analysis techniques, which are simple
and inexpensive for the spectral analysis on regular grids.
However, the application of these techniques on the limited
areas used in RCMs has to overcome two difficulties; 1) the
largest scale are not fully represented on the grid and ii) the
fields represented on limited areas are aperiodic. These two
problems can be solved by removing the components which
are aperiodic (frends) on the limited area. Since these
components are not identifiable in a unique way, different
filters have been designed, which mainly differ in the
approach used to eliminate these components.

In this study, two filtering techniques have been used, the
Discrete Cosine Transform (DCT), firstly applied by Denis
et al (2002) to the spectral analysis of field on limited areas,
and the Discrete Filter introduced by Feser and Von Storch
(2005). In particular, low-pass filters and band-pass filters
have been built following the methods described in the
paper. From the comparison of these two methods, it is
possible to get some estimate of the accuracy of the scale
separation and to understand the best conditions to design
and apply spatial filters on limited areas. From this
comparison, it is possible to conclude that it is easier to
design discrete filters, since it is possible to keep the control
their spatial extents explicitly; however the DCT filters are
cheaper and it is possible to design them to reproduce the
discrete filters quite closely.

Finally, the two methods have been compared with a
filtering approach commonly used whereby the RCM
contribution on a given field is estimated as its difference
with respect to the spatial average on an area including (nxn)
grid-boxes, assumed to be representative of the GCM

resolution. The response functions for the three filters are
shown in Figure 1, which illustrate rather clearly the
problems associated with this simplified approach.

pleas digital averaging
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Figure 1 Response functions for the band-pass
filters (left and middle panels) designed to separate
spatial scales between 100km and 700km on the
ENSEMBLES minimal grid. The right panel is the
response function for the averaging filter designed to
eliminate the same GCM scales from the RCM
signal

3. Application to ENSEMBLES integrations

The ENSEMBLES project has produced two sets of RCM
integrations. The first set includes 18 different RCM
integrations with a horizontal resolution of 25km x 25km
driven by ECMWF ERA-40 boundary conditions. The
same RCMs have also been used to downscale a smaller
set of GCMs. These RCM integrations have been
performed on a common grid.

These two datasets allow to estimate the mesoscale
components added by the RCMs and to study their
dependence on the driving condition and their robustness
with respect to the regional models. These part of the work
is currently in progress, a preliminary analysis will be
presented at the workshop.
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1. Motivation and background

Castro et al. (2005) proposed four types of dynamic
downscaling with regional atmospheric models. Type 1,
which is used for numerical weather prediction, remembers
real-world conditions through the initial and lateral
boundary conditions. In Type 2, the initial conditions in the
interior of the model are “forgotten” but the lateral boundary
conditions feed real-world data into the regional model (i.e.
through an atmospheric reanalysis). In Type 3, a global
model prediction, rather than a reanalysis, is used to create
lateral boundary conditions. The global model prediction
includes real-world surface data such as prescribed SSTs,
sea ice coverage, etc. In Type 4, a global model is run in
which there are no prescribed internal forcings. The
coupling (interfacial fluxes) among the ocean-land-
continental ice-atmosphere are all predicted. Regional
climate modeling, in this framework, can be considered
Type 2 dynamical downscaling and above. In these types of
dynamical downscaling, in which the initial conditions in the
interior of the model are “forgotten” but the lateral boundary
conditions feed data into the regional model, it is desirable
to retain the large-scale features provided by the driving
global atmospheric model or reanalysis and add information
on the smaller scales. This question is pertinent for regional
climate modeling, in which the initial conditions in the
interior of the model are “forgotten” but the lateral boundary
conditions feed data into the regional model.

Dynamical downscaling was investigated using Type 2
simulations in a suite of experiments with the RAMS model
for May 1993 in Castro et al. (2005). The main point of this
work was to investigate whether or not the regional model
retained large-scale features provided by the driving global
atmospheric reanalysis and added information on the smaller
scales. Both a commonly-used nudging sponge zone at the
boundaries and an interior nudging alternative were tested.
It was found that interior nudging gives better results for
large scales but at the expense of reduced variability at
smaller scales. Here we examine: 1) Can the Castro et al.
(2005) results be confirmed using a different model system?
2) What is the effect of a different interior nudging
technique? (i.e., the difference between a 4DDA internal
nudging type and spectral nudging) and 3) Is value added on
the smaller scales?

2. Model and Methods

We use the regional climate model CLM, a climate
version of the German Weather Service (DWD) numerical
weather forecast model COSMO to perform simulations.
Data used for lateral boundary conditions are from the
ERA40 atmospheric reanalysis. Simulations were
performed on a small and large model domain with grid
spacing ranging from 25 to 200 km. Two different types of
nudging were applied: 1) observed state forced upon the
model through forcing only in a lateral boundary forcing

zone (i.e. classical sponge technique), and 2) a spectral
nudging technique. The first type of nudging is commonly
used in both regional weather forecasting and regional
climate model simulations. In the spectral nudging
approach, the lateral “sponge” forcing is kept and an
additional steering term is introduced into the interior of
the model domain. Consider the expansion of a CLM
variable:

Ko .
(2,0, t) = z ar, (,)ewl/g oo
e

J==I s

With zonal coordinates A, zonal wave numbers j and zonal
extension of the area L,. Meridional coordinates are
denoted by ¢ , meriodional wave numbers by K, and the

meridional extension by [, o+ ! represents time. The

number of zonal and meridional wavenumbers is .J,, and
K,,. A similar expansion is done for the analysis. The
coefficients of this expansion are labeled a(a,j,k) and the
number of Fourier coefficients is J, < J,, and K, < K,,,.
The confidence in the realism of the different scales of the
reanalysis depends on the wave numbers j and K and is
denoted by #;,. Interior nudging terms are added in the
spectral domain in both directions, in the form:
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Interior nudging terms are dependent on height, with more
weight to the reanalysis given at higher levels in the
model. Spectral nudging at each model time step is
applied to horizontal wind components # and v above 850
hPa with a height-dependent weighting function. All
values for wavelengths larger than the one corresponding
to smallest physically resolved wavelength of the

reanalysis (K ) are nudged.

We applied the same two-dimensional spectral
analysis applied in Castro et al. (2005) to determine the
power spectrum S(k) of model variables, where k is the
wave number. The fractional change in spectral power

(AS(k) ., ) is computed for each analysis time step.

S(k),, 1S(k), =1,
S(k),, /S(k),, =1, follow-onexperimens

basic experimens

AS(k)frac = {

where a is the reanalysis, m; is the basic experiment
without internal nudging and m, is the follow-on
experiment with internal nudging.



3. Results

The fractional change in spectral power for the column-
average total kinetic energy and moisture flux convergence
for the last 15 days of May 1993 basic experiment is shown
in Fig. 1 for CLM and Fig. 2 for RAMS, as in Castro et al.
(2005). The results are vary similar. Both models show the
same behavior for wave numbers higher than K:m. The

higher the horizontal resolution the higher the added
variability. For low wave numbers (less than K;ax ), the

CLM retains about the same variability as the RAMS
version with explicit microphysics and the Kain-Fritch
cumulus parameterization scheme turned on. Results from
the larger domain are also shown as the dotted curves.
Kinetic energy is less retained at large scales on the large
domain, whereas there is increased variability on smaller
scales k > K:m. The fractional change in integrated

moisture flux convergence (not shown) similarly shows less
retention of variability at larger scales for the large domain.
In follow-on experiments, the basic experiments were
repeated but with additional interior nudging added. Again,
results in kinetic energy confirm the findings by Castro et
al. (2005). For large scales (i.e. wavenumbers less than

K:nax) the values for the RCM are pushed nearer to those of

the global reanalysis which means that the value is better
retained by applying interior nudging. There are, however,
major differences for the small scales between the CLM and
RAMS results for moisture flux convergence. RAMS
reduces the added variability, whereas in CLM the added
variability is preserved, especially on the small domain (not
shown). These differences can be attributed to the use of the
spectral nudging technique which preserves the added
variability on the smaller scale.

Investigation regarding day-to-day differences in the
representation of large-scale circulation fields and model
simulated precipitation also leads to the same conclusions as
for the RAMS simulations. With interior nudging to the
model, the amplitude of synoptic features (i.e. ridges and
troughs) is preserved and there is a more faithful
representation of precipitation as compared to observations.

4. Conclusions

The results for CLM presented here are similar to those
found in the RAMS study by Castro et al. (2005) for basic
experiments using nudging only in a lateral boundary
sponge zone. Spectral nudging yields less reduction in
added variability of the smaller scales than grid nudging and
is therefore the preferred approach in RCM dynamic
downscaling. Results suggest the effect to be largest for
physical quantities in the lower troposphere. The utility of
all regional models in downscaling primarily is not to add
increased skill to the large-scale in the upper atmosphere,
rather the value added is to resolve the smaller-scale features
which have a greater dependence on the surface boundary.
However, the realism of these smaller-scale features needs
to be quantified, since they will be altered to the extent that
they are influenced by inaccurate downscaling of the larger-
scale features through the lateral boundary conditions and
interior nudging. It should also be assessed if the
dynamically downscaled information provides more
accuracy than a corresponding statistical downscaling
technique.
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Figure 1. Fractional change in spectral power versus
logio(k) and wavelength, RAMS small domain
experiments for (a) column-average total kinetic energy
and (b) column integrated moisture flux convergence. The
dashed black line and the solid black line indicate the
largest physically resolved wavelength and Nyquist
frequency, respectively, of the driving reanalysis. & in

units of m”'. Wavelength in units of m. Grid spacing of

experiments as indicated by colors.
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1. Introduction

Global models are used to generate climate change
according to different future scenarios. However, these
models have rather coarse resolution. The nesting of a
Regional Climate Model (RCM) over the area of interest
allows the reduction of grid size which is more desirable for
impact studies. In addition, the climate generated from a
regional model is strongly dependent on the lateral boundary
conditions (LBC) and, consequently, on the domain size or
the position of the LBCs (Xue et al. 2007).

The objective of this work is to show the dependence of the
tropical South America climate from a RCM on the choice
of the position of the lateral boundary conditions.

2. The models

The driver model is the INGV-SXG coupled GCM (Gualdi
et al 2003a,b) which uses ECHAM4 (Roeckner, 1996) as
atmospheric component, OPA 8.2 (Madec et al, 1999) as
ocean model and LIM as the sea ice model (Fichefet e
Morales Maqueda, 1999). The atmospheric resolution is
about T106L19.

The RCM is the Eta Model (Black, 1994; Mesinger et al,
1988; Janjic, 1994) configured with 40-km horizontal
resolution and 38 vertical layers. The model has been used
for weather and seasonal forecasts over South America
(Chou et al, 2005) and was adapted to run long-term
integrations (Pesquero et al, 2009).

A continuous integration for the present climate period from
1961-1990 was carried out, with the lateral boundary
conditions provided at every 6 hours. The sea surface
temperature was taken from monthly values produced by the
AOGCM. The small domain was setup with 135x293x38
points, with the boundaries positioned about 15 degrees
outside the continent in the tropics, and the larger domain
with 201x333x38 points, spanned additional 20 degrees in
the east-west direction. In the second domain, the
Intertropical Convergence Zone can produced by the RCM.

Domains of the Eta Model.

Figure 1.

3. Results

During DJF, the austral summer, the major precipitation
areas over South America continent occur in the Amazon,
northern part of Northeast Brazil, central and southeastern
parts of Brazil. These areas are associated with the
Intertropical Convergence Zone (ITCZ), the South Atlantic
Convergence Zone (SACZ) and frontal passages. The driver
model produced the rain band associated to the ITCZ to the
south of the observed position; a secondary band was
positioned to the north suggesting a double structure (Figure

2). The small domain nested run did not show this double
structure, however, the ITCZ rain was very weak, and
therefore rains over Amazo