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Abstract

The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community

supports important commercial and recreational fisheries. Both the fish species and the

fisheries are strongly affected by climate variations. These climatic effects and the

underlying mechanisms are briefly reviewed. We then use recent regional – scale climate

– ocean modelling results to consider how climate change during this century will affect

the fish community of the Baltic and fisheries management. Expected climate changes in

northern Europe will likely affect both the temperature and salinity of the Baltic, causing

it to become warmer and fresher. As an estuarine ecosystem with large horizontal and

vertical salinity gradients, biodiversity will be particularly sensitive to changes in

salinity which can be expected as a consequence of altered precipitation patterns.

Marine-tolerant species will be disadvantaged and their distributions will partially

contract from the Baltic Sea; habitats of freshwater species will likely expand. Although

some new species can be expected to immigrate because of an expected increase in sea

temperature, only a few of these species will be able to successfully colonize the Baltic

because of its low salinity. Fishing fleets which presently target marine species (e.g. cod,

herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas

or switch to other species which tolerate decreasing salinities. Fishery management

thresholds that trigger reductions in fishing quotas or fishery closures to conserve local

populations (e.g. cod, salmon) will have to be reassessed as the ecological basis on which

existing thresholds have been established changes, and new thresholds will have to be

developed for immigrant species. The Baltic situation illustrates some of the uncertain-

ties and complexities associated with forecasting how fish populations, communities and

industries dependent on an estuarine ecosystem might respond to future climate change.
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Introduction

The production and distribution of fish depends

strongly on environmental conditions. Changes in hy-

drographic and meteorological variables such as tem-

perature, salinity, storminess and cloudiness have all

been shown to affect fish life history (e.g. success of

reproduction, spatial distributions, migration patterns,

growth and mortality rates; Bakun, 1996; Stenseth et al.,

2004). These influences can sometimes impact overall

population dynamics so much that populations will

undergo multiyear trends in abundance. If these popu-

lations are commercially exploited, the trends in abun-

dance will in turn affect how the populations are

managed (e.g. setting of fishing quotas, establishment

of closed fishing areas and seasons). Particular exam-

ples of populations which undergo or have undergone
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such fluctuations are the cod population in the North

Sea during the late 1950s–1960s when it increased, and

again during the past 10–15 years when it decreased

(Beaugrand et al., 2004), and populations of sardine and

anchovy in many of the world’s major upwelling zones

(e.g. near the coasts of southern Africa, Peru and Chile;

Bakun, 1996; Chavez et al., 2003; Stenseth et al., 2004).

Fish species and populations in the Baltic Sea (Fig. 1)

have also been impacted by climatic variations. These

impacts include changes in growth, survival and pro-

duction rates and will be reviewed briefly below. The

changes in fish biology, which are often accompanied by

changes in the structure and function of the entire Baltic

ecosystem, have occurred as a consequence of changes

in climatic and hydrographic forcing at inter- and

multiannual time scales (Hänninen et al., 2000; Axenrot

& Hansson, 2003; Köster et al., 2005). Recently, some of

the multiannual changes have been characterized as

regime shifts (Köster et al., 2003b; Alheit et al., 2005;

Hagen & Feistel, 2005).

There is now strong evidence that global climate

change has had an anthropogenic component in recent

decades (Levitus et al., 2001; Barnett et al., 2005) and that

climate change will continue during the 21st century

(IPCC, 2001). Whether some of these global changes are

also affecting hydrographic conditions in the Baltic is

presently under investigation, but there is evidence that

(1) sea temperatures in both the surface (MacKenzie &

Schiedek, 2007) and deeper (halocline) layer (MacKenzie

& Köster, 2004) of the Baltic have increased during most

of the 1990s and early 2000s (Fig. 2), (2) winters have

become milder (Hagen & Feistel, 2005), (3) precipitation

over the Baltic watershed has increased (Hänninen

et al., 2000) and (4) salinity in the central Baltic has

decreased (Alheit et al., 2005; Möllmann et al., 2005)

(Fig. 3).

In this study, we address how some of the expected

climate changes might influence Baltic fish species and

populations. These influences could be particularly

important in a brackish coastal sea such as the Baltic

where strong horizontal and vertical gradients in sali-

nity, temperature and oxygen concentration limit the

reproduction and distribution of most species. We then

evaluate how the climate-induced changes in fish ecol-

ogy will affect Baltic fisheries and suggest potential

fishery management actions, which could be implemen-

ted to support long-term sustainability of the popula-

tions.

Methods

This study combines a qualitative review of Baltic fish-

eries and ecosystem literature with recent regional

climate model outputs for the 21st century climate of

northern Europe. The intention is to provide an initial

evaluation of how climate change will affect Baltic fish

populations and fisheries during the 21st century. Such

an evaluation is timely as several countries around the
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Fig. 1 Map of the Baltic Sea showing the ICES subdivisions. The HELCOM definition for the Baltic Sea includes the Kattegat and

subdivisions 22–32. Subdivision 22 contains the Belt Sea. Black areas show deep basins of the eastern Baltic Sea where cod spawning

occurs (Bagge et al., 1994).
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Baltic (e.g. Denmark, Finland) and elsewhere (e.g.

Canada, Great Britain) are preparing, planning to pre-

pare, or have prepared, climate adaptation policies and

strategies. Governments are therefore requesting advice

from government ministries, industries and nongovern-

mental organizations in various socioeconomic sectors

of their countries on what the most important impacts

of climate change will be and how those sectors might

respond to climate change. The geographic coverage of

the study is the Baltic Sea as defined by the Helsinki

Convention for the Protection of the Marine Environ-

ment of the Baltic Sea, and therefore, includes all waters

from the Kattegat and Belt Sea to the Gulfs of Bothnia

and Finland (Fig. 1). The Baltic itself is divided into

subdivisions for the management of its ecosystem and

fisheries. The study focuses on wild populations and,

therefore, does not address how aquaculture or sea-

ranching in the Baltic will be impacted by climate

change.

Quantifying the consequences of climate variability

on Baltic fish populations requires both detailed process

knowledge of lifehistories and species interactions, as

well as long time series of abundance and distribution.

The former information is being compiled from field

and laboratory studies (Vallin et al., 1999; Jutila et al.,
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Fig. 2 (a) Time series of temperature in May at depth of 45–

65 m in Bornholm Basin, Baltic Sea (ICES Subdivision 25). Data

from 1955 to 1999 are from the ICES Hydrographic database (see

MacKenzie & Köster, 2004 for details), and data from 2000 to

2005 are kindly provided by Dr Hans-Harald Hinrichsen, GEO-

MAR, Kiel, Germany. (b) Mean annual sea surface temperature

(SST) in the central Baltic Sea (54.01N–60.51N; 14.51E–23.51E)

based on ships-of-opportunity measurements compiled by

the Hadley Centre for Climate Prediction, United Kingdom

(MacKenzie & Schiedek, 2007). Note the different scaling on

both axes in the panels.
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Fig. 3 Relationships between log-anomalies of (a) salinity (psu)

and Pseudocalanus acuspes (n�m�3), and (b) P. acuspes and

herring condition (mean weight at 18 cm) for the years 1977–

2002 (Möllmann et al., 2005); the relationships are statistically

significant (a) R2 5 19%, P 5 0.025; (b) R2 5 23%, P 5 0.014)
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2005; Köster et al., 2005), whereas the latter is being

compiled from fisheries institutes, historical archives,

tax records and archaeological evidence (Enghoff, 1999;

Holm et al., 2001; MacKenzie et al., 2002; Ojaveer &

Andrushaitis, 2004). In the Baltic region, both ap-

proaches are being used in an interactive and iterative

fashion. Eventually, they will provide information

about how fish abundances and distributions varied

when exploitation was lower and during alternate

combinations of environmental conditions (e.g. Little

Ice Age, Medieval Warm Period) differing from those

observed in the late 20th century, but resembling those

conditions that may occur again as a consequence of

climate change.

The effects of climate variability on Baltic fish popu-

lations are probably best documented for the cod, sprat

and herring populations in the eastern part of the Baltic

Sea (ICES Subdivisions 25–32). These populations have

been the focus of several large international and na-

tional research programmes since the early 1990s. Cli-

mate-related results from these investigations will be

summarized below, and impacts of climate variability

on other species (e.g. flatfishes, freshwater species) will

be presented subsequently.

Results and discussion

Biodiversity of the Baltic fish community

Compared with similar-sized ecosystems elsewhere the

overall species richness and biodiversity of the Baltic

fish community is low. For example, the North and

Black Seas have ca. 230 and 170 species, respectively,

whereas the Baltic has ca. 100 (EEA, 2002). The main

reason for the low species richness in the Baltic Sea is its

low salinity which imposes a physiological stress to both

marine and freshwater species (Voipio, 1981; HELCOM,

2002; Ojaveer & Kalejs, 2005). Marine species such as sole

Solea solea and plaice Pleuronectes platessa are common in

the Kattegat (salinity 425%) but become much less

common further south and east-northeastwards into

the Baltic. In an analogous manner, freshwater species,

such as perch (Perca fluviatilis L.), pikeperch (Stizostedion

lucioperca L.) and whitefish (Coregonus lavaretus marae-

noides Poljakow), are more common in the northern

Baltic and coastal areas than in southern, western and

offshore areas of the Baltic (Voipio, 1981; Ojaveer, 2002).

Hence, many fish species in this ecosystem are living at

the physiological limit of their geographical distribution,

and for some this has led to genetic differences among

populations living in different parts of the Baltic (Nielsen

et al., 2001; Nielsen et al., 2003; J�rgensen et al., 2005).

Effects of climate variability and change on ecology of
Baltic fish populations

Hydrographic processes affecting salinity have particu-

larly rapid and dramatic impacts on species distribu-

tions and their susceptibility to exploitation in different

parts of the Baltic. These processes clearly include major

Baltic inflows of saline North Sea water (Schinke &

Matthäus, 1998), and changes in precipitation patterns,

evaporation rates and runoff (Hänninen et al., 2000).

Changes in temperature, especially during winter, as

well as wind forcing, will affect fish habitats and geo-

graphic distributions.

Cod, sprat and herring in the eastern Baltic Sea

(ICES subdivisions 25–32)

Direct effects on cod and sprat recruitment – influences

of hydrographic conditions on egg and larval survival. The

survival of fish early life stages in the eastern Baltic

(ICES Subdivisions 25–32) is sensitive to hydrographic

conditions in the spawning areas (Bagge et al., 1994;

Parmanne et al., 1994; Wieland et al., 1994). Eggs of

Eastern Baltic cod successfully develop only in deep

water layers with oxygen concentrations 42 mL L�1

and a salinity 411 psu. These thresholds are the basis

for the so-called reproductive volume (RV), i.e. the

water volume sustaining cod egg development (Plikshs

et al., 1993; MacKenzie et al., 2000). The climate-induced

decrease in RV since the 1980s caused high cod egg

mortality, especially in the eastern basins, i.e. Gdansk

Deep and Gotland Basin (Köster et al., 2003a).

Owing to a different specific gravity, sprat eggs float

shallower than cod eggs (Nissling et al., 2003), and

consequently their survival is less affected by poor

oxygen conditions. However, sprat eggs occur at depths

where the water temperature is affected by winter

cooling (Wieland & Zuzarte, 1991), and egg and larval

development is influenced by extremely low water

temperatures. Consequently, weak year classes of Baltic

sprat have been associated with severe winters (MacK-

enzie & Köster, 2004; Nissling, 2004), resulting in tem-

peratures of below 4 1C in the intermediate water layer

during spawning time. The absence of severe winters

since 1986–1987 and related favourable thermal condi-

tions for sprat egg survival contributed to the generally

high reproductive success of Baltic sprat during the

1990s (Köster et al., 2003a; MacKenzie & Köster, 2004)

(Fig. 4). Warm summer temperatures also promote sprat

recruitment (Baumann et al., 2006).

Behavioural studies demonstrated that cod larvae

exposed to oxygen concentrations below 2 mL L�1 were

mostly inactive or moribund (Rohlf, 1999). Although an

impact of the environment on larval survival can there-

fore be expected, no direct effect of hydrography on
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observed larval abundance has been detected in a

statistical analysis (Köster et al., 2001). Consequently,

other factors such as food availability might be critical

for larval survival. The same may be true for sprat,

where the relationship between temperature and larval

survival during the 1990s is most likely a result of

enhanced plankton production at higher temperatures

(Köster et al., 2003a).

Indirect effects on cod, sprat and herring recruitment –

influences of mesozooplankton abundance on larval survi-

val. The effect of food availability on growth and sur-

vival of cod larvae has been investigated using

a coupled hydro/trophodynamic individual-based

model (Hinrichsen et al., 2002a). Model results suggest

that the co-occurrence of peak prey and larval abun-

dances is critical for high survival rates. The decline of

the Pseudocalanus sp. stock during the 1980s–1990s, a

result of low salinity and oxygen conditions (Möllmann

et al., 2000, 2003a), caused a food-limitation for early cod

larvae. Model simulations including Pseudocalanus sp.

nauplii as prey resulted in high survival rates, whereas

omitting Pseudocalanus sp. resulted in low survival

(Hinrichsen et al., 2002a). Thus, low Pseudocalanus sp.

availability has contributed to the low recruitment of

cod since the late 1980s, and evidence exists that it

prevented the stock from recovery despite improved

egg survival after the major inflow in 1993.

In contrary to cod, sprat larvae prey mainly on the

copepod Acartia spp. (Voss et al., 2003). Higher water

temperatures during the 1990s have resulted in a drastic

increase in the standing stock of these copepods

(Möllmann et al., 2000, 2003b). This enhanced food

supply may, thus, have contributed to the high repro-

ductive success of sprat during the 1990s (Köster et al.,

2003a).

Herring recruitment in some parts of the Baltic is

also affected by temperature and zooplankton abun-

dance. In the Gulf of Riga, recruitment is positively

correlated with both variables and this is used in fish-

eries management (Kornilovs, 1995; ICES, 2005a). Lar-

val herring growth rates in the northern Baltic (SW

Finland) are positively temperature dependent (Hakala

et al., 2003), and larger size may allow higher survival

rates. Herring recruitment in the central Baltic Sea also

increases with sea temperature (Axenrot & Hansson,

2003).

Indirect effects on cod and sprat recruitment – influ-

ences of predation by clupeids on egg survival. A substan-

tial predation on cod eggs by clupeids has been

observed in the Bornholm Basin (ICES Subdivision

25). Egg predation by sprat is most intense at the

beginning of the cod spawning season (Köster & Möll-

mann, 2000a). After spawning ends in spring, most

sprat leave the basin, resulting in a reduced predation

pressure on cod eggs. In parallel, herring return from

their coastal spawning areas to feed in the Bornholm

Basin, which includes predation on cod eggs (Köster &

Möllmann, 2000a).

The drastic increase in the sprat stock during the

1990s has increased the potential of cod egg predation

mortality. However, the shift in cod peak spawning time

from spring to summer (Wieland et al., 2000) resulted in

a decreasing predation pressure by sprat. Additionally

a decline in individual sprat predation on cod eggs was

observed from 1993 to 1996, despite relatively high

concentrations of cod eggs in the plankton. This is

explainable by a reduced vertical overlap between pre-

dator and prey. Owing to the increased salinity after the

1993 major Baltic inflow (Schinke & Matthäus, 1998),

cod eggs were neutrally buoyant in shallower water

layers, while clupeids were deeper, due to enhanced

oxygen concentration in the bottom water (Köster &

Möllmann, 2000a). As a result, predation on cod eggs is

higher in stagnation periods, and contributed to the low

reproductive success since the 1980s. Similarly, egg

cannibalism was found to be an important source of

sprat egg mortality in the Bornholm Basin, thereby

representing a self-regulating process for the sprat stock

(Köster & Möllmann, 2000b). The intensity of egg

cannibalism depends as well on the vertical overlap

between predator and prey, which is influenced by the

prevailing salinity and oxygen conditions.

Direct and indirect effects on herring and sprat

growth – influences of salinity, oxygen concentration and

May temperature (45–65 m)
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prey (mesozooplankton, nektobenthos) abundance. Herring

weight-at-age has decreased significantly during the

mid-1990s–2000s (ICES, 2005a). Several hypotheses

have been proposed and tested to explain the decrease:

(i) size-selective predation of cod on herring (Sparholt &

Jensen, 1992; Beyer & Lassen, 1994), (ii) mixing of sub-

stocks with different growth rates (ICES, 1997) and (iii)

a real decrease in growth rates due to changes in the

biotic environment (Cardinale & Arrhenius, 2000). Re-

cent evidence support the last hypothesis (Rönkkönen

et al., 2004; Möllmann et al., 2005).

Herring and sprat have similar diets during much of

their ontogeny (Möllmann & Köster, 1999; Casini et al.,

2004). In addition, the feeding areas of herring and sprat

in the Central Baltic overlap vertically in winter, as well

as spring and early summer when both species feed

during daytime in the halocline of the deep basins

(Köster & Schnack, 1994). Here, the clupeids compete

for the calanoid copepod Pseudocalanus sp. dwelling in

the high salinity layer (Möllmann et al., 2004). The

reduced availability of Pseudocalanus sp. resulted in a

lowered food intake of herring and can be related to the

decrease in herring condition (Möllmann et al., 2003a,

2005) (Fig. 3). Recently, Rönkkönen et al. (2004) sup-

ported this finding by showing that growth rates of

herring in the northern Baltic depended explicitly on

the abundance of the copepod Pseudocalanus sp.

As herring grow, their dietary preferences change

and larger nektobenthic species such as Mysis mixta and

amphipods become common prey (Möllmann et al.,

2004; Casini et al., 2006). When the abundance of these

prey decreases in deep parts of the Baltic, as occurs

during anoxia periods (Välipakka, 1990), large herring

are forced to consume zooplankton species (Möllmann

et al., 2004; Casini et al., 2006). As a consequence,

consumption of small prey by large herring increases

foraging costs. This mechanism is believed to have

contributed to the reduced growth in herring during

the 1990s and early 2000s (Flinkman et al., 1998;

Rönkkönen et al., 2004).

Food availability, especially Pseudocalanus sp. popula-

tion size, has been hypothesized to have caused a

decrease in sprat growth during the 1990s (Cardinale

et al., 2002; Möllmann et al., 2004; Casini et al., 2006).

However, correlations between the abundance of the

copepod and sprat condition in the Central Baltic are

weak (Möllmann et al., 2005). It is more likely that strong

intraspecific competition at high stock size caused the

lowered growth in sprat, explaining a significant rela-

tionship between sprat condition and sprat stock size

(Möllmann et al., 2005; Casini et al., 2006). Similarly,

interspecific competition with the large sprat stock has

contributed to the reduced herring growth (Rönkkönen

et al., 2004; Möllmann et al., 2005; Casini et al., 2006).

A direct relationship among salinity, and herring and

sprat growth was shown by some authors (Cardinale &

Arrhenius, 2000; Cardinale et al., 2002; Rönkkönen et al.,

2004). However, this relationship probably reflects the

change in mesozooplankton community structure rather

than a direct physiological effect of salinity on these

euryhaline fish species.

Conceptual model of climate effects on recruitment and

growth of cod, sprat and herring populations in the eastern

Baltic. Our present understanding of direct and indirect

effects of climate variability on cod and sprat recruit-

ment, as well as herring and sprat growth can be

summarized schematically (Fig. 5). Climate affects sali-

nity and oxygen (S/O2) through runoff and inflows of

North Sea water, and water temperature (T) through

direct air–sea interaction. Changes in S/O2 directly

affect cod recruitment via egg survival, and indirectly

via Pseudocalanus sp. abundance which influences larval

survival. High temperatures directly support sprat re-

cruitment (Fig. 4) via increased egg survival, and in-

directly via the role of Acartia spp. availability on larval

survival. Warm temperature also promotes herring

recruitment in the central Baltic and in the Gulf of Riga.

Furthermore, hydrographically mediated egg predation

regulates cod and sprat recruitment.

Herring growth appears to be affected by the indirect

effect of S/O2 on Pseudocalanus sp. and the increased

competition with the enlarged sprat stock. In addition,

growth of larger herring has probably also been limited

by food availability due to the effect of stagnation

periods and anoxia on abundance of nektobenthic prey.

Reduced growth in turn probably has affected repro-

duction (e.g. longer time to maturity, lower relative

fecundity) and recruitment but these links have not

been studied yet. The increase in the sprat stock is

mainly a result of reduced predation by cod and high

reproductive success during the 1990s and has caused a

density-dependent decrease in sprat growth. This intra-

and interspecific competition may have been amplified

by low availability of Pseudocalanus sp. (Fig. 3), mysids

and amphipods.

Flatfishes (plaice, dab, flounder and sole). Plaice is an

important commercial species in the Kattegat and to a

lesser extent in the Belt Sea. Its spatial distribution

depends partly on the salinity gradient through the

Kattegat-Belt Sea-western Baltic (Fig. 1). In addition,

interannual variations in juvenile plaice abundance in

the Kattegat is at least partly controlled by wind-driven

hydrographic transport of eggs and larvae from the

Skagerrak (Pihl, 1990; Nielsen et al., 1998).

Plaice was common in the central Baltic (ICES

Subdivisions 25–28) in the earlier decades of the 20th

century when it supported directed commercial
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fisheries (Temming, 1989). The stock declined in the late

1930s–1940s because of recruitment failures asso-

ciated with recruitment overfishing and unsuitable

hydrographic conditions for survival of eggs and

larvae (Temming, 1989). The population recovered in

the 1950s following several large inflows of saline,

oxygen rich water. However, research surveys

conducted in the Bornholm Basin during the 1970s

and 1980s show that the population declined again

(Temming, 1989). The reason for the second stock

decline in the central Baltic is hypothesized to be

caused by a combination of: (i) high bycatches in

trawl fisheries which were targeting cod, (ii) high

predation pressure by the large cod stock in the early

to mid-1980s and (iii) low plaice recruitment success

during the stagnation period in the second half of the

1980s (Temming, 1989; Nissling et al., 2002). Since the

mid-1980s, the plaice population has remained small

(ICES, 2005a), despite much lower abundances of an

important predator (cod) and also lower bycatch

mortality in the cod fishery. Presumably, plaice

recovery has been delayed because hydrographic

conditions (salinity and oxygen levels in deep water)

since the early 1980s have generally been unfavourable

for fertilization and survival of eggs (Nissling et al.,

2002).

Dab (Limanda limanda) presently inhabits the

Kattegat and the western Baltic. However, historically,

dab also existed in the central Baltic and used the

Bornholm Basin as its main spawning area. Catch

statistics and research surveys indicate that the dab

stock in the central Baltic collapsed with the plaice

stock during the early 1930s–1940s (Temming, 1989).

Unlike the plaice stock, the dab stock has never

recovered. Temming (1989) argues that successive

recruitment failures due to unfavourable hydro-

graphic conditions during the early 1930s and

predation by cod caused the dab stock to decline.

Compared with other marine species (e.g. plaice,

flounder and cod) in the central Baltic, dab eggs

require higher salinities for activation of spermatozoa

and successful fertilization of eggs, and to remain

buoyant at depths where suitable oxygen

concentrations allow egg development (Nissling et al.,

2002). Dab eggs are therefore less likely to be fertilized

and to survive at low salinities and are more likely to be

exposed to deep water with lower oxygen

concentrations than other marine species in the Baltic.

Moreover, and in comparison with plaice, dab spawns

later in the year (Temming, 1989), when oxygen

conditions at depths of neutral egg buoyancy are

more likely to be lower than earlier in the year

(Matthäus, 1978; MacKenzie et al., 1996). The

differences in hydrographic requirements and

spawning behaviour among the species (Nissling

et al., 2002) have probably prevented recovery of the

dab stock, even though abundance of a key predator,

cod (Temming, 1989), is now very low (ICES, 2005a).

Recovery of the central Baltic dab population, assuming

a remnant population is still present, will likely require

a multiyear period during which subhalocline salinities

and oxygen levels are high and predation by cod is low.
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Climate
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Climate

- cod, - sprat, - herring, - Acartia spp.- Pseudocalanus sp.,
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Fig. 5 Conceptual model of major climate effects on recruitment (a) and growth (b) of three fish species (cod, sprat and herring) in the

eastern Baltic Sea. Dotted arrows – effect of climate on hydrography, dashed arrows, indirect effects; and solid arrows direct effects;

S, salinity; O2, oxygen; T, temperature (explanations, see text).
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Flounder, Platichthys flesus, is a third commercially

and ecologically important flatfish species in the area.

Flounder is able to reproduce (i.e. activation of

spermatozoa, fertilization of eggs) at lower salinities

than other flatfishes in the Baltic and therefore its

habitat and biomass are much larger (Nissling et al.,

2002). Its distributional range extends from the Kattegat

into the central-northern Baltic, including low salinity

coastal areas. Trends in total abundance and biomass

are uncertain (ICES, 2005a). However, catch rates in the

eastern and northern areas (e.g. Gulf of Finland) rise 3–4

years after increases in bottom salinity caused by major

Baltic inflows, and subsequently, fall in the period

between inflows (Ojaveer & Kalejs, 2005). The increase

in catch rates and landings following inflows is

consistent with the beneficial effect of increases in

salinity on reproductive parameters (Nissling et al.,

2002).

Sole spatial distributions are limited in the Kattegat-

Belt Sea area by salinity, and the species is rarely seen in

the western or eastern Baltic where salinities are too low

(Muus & Nielsen, 1999). In areas where salinities can be

tolerated by sole, other factors limit abundance and

distribution. In the Kattegat and Skagerrak the species

is located near its northerly limit of distribution (Muus

& Nielsen, 1999) and temperature is probably an

important factor affecting abundance. Sole abundance

in the Kattegat as recorded in research vessel surveys

and in analytical biomass estimates has risen during the

late 1990s and early 2000s (ICES, 2005a). Recent warm

temperatures in the Kattegat and Skagerrak during this

period (MacKenzie & Schiedek, 2007) may have enabled

sole to increase its survival and distributional range

during these years. However, the mechanisms

responsible for the increase in sole abundance are

unknown and require further investigation.

Migratory and freshwater species. Several studies have

shown how salmon lifehistory is influenced by

variations in water temperature. Both the smolt run

and survival of wild Atlantic salmon in the Baltic are

temperature dependent (Kallio-Nyberg et al., 2004;

Jutila et al., 2005). Entry to the Baltic from rivers is

triggered by temperatures 410 1C, and survival of

smolts in the open Baltic is highest at intermediate

temperatures (9–11 1C; Fig. 6). When in the open

Baltic, salmon avoid warm water (411–12 1C) by

moving to deeper, colder layers (Alm, 1958).

Spawning migrations to rivers are also temperature

dependent, with salmon arriving earlier when spring

temperatures are higher than average (Dahl et al., 2004).

The influence of temperature on sea trout (Salmo

trutta) is less well documented. However, studies of

the influence of salinity on survival and growth of sea

trout parr showed no differences between parr raised in

fresh or brackish (6.7 psu) water (Landergren, 2001).

The higher salinity coastal habitat should, therefore,

not impose a metabolic barrier to sea trout parr

entering the coastal zone from rivers without smolting.

Variations in salinity also affect whitefish (Coregonus

sp.) reproduction (Albert et al., 2004). Fertilization of

eggs in the laboratory was higher at salinities o3.3 psu

than at 4–6.2 psu, and egg survival remained high at

salinities 0.2–1.3 psu. Hatching tended to occur earlier

at lower salinities.

Temperature variations influence pikeperch and

perch biology. Year–class strength for both species at

several sites around the Baltic increased with summer

and spring temperatures during the first year of life

(Bohling et al., 1991; Lappalainen & Lehtonen, 1995;

Kjellman et al., 2003). The presumed reason for the

beneficial effect of temperature on recruitment in

these species is via the positive influence of

temperature on growth rates and body size

(Lappalainen et al., 2000; Lozys, 2004). Winter

mortality rates are size-dependent in some Baltic

areas; warm summers, which result in faster growth

and larger prewinter body sizes, are, therefore, likely to

improve over-winter survival rates (Lappalainen et al.,

2000).

Both of these species are sensitive to salinity

variations. As a result habitats for eggs, larvae and

adults are restricted to salinities generally lower than

10 psu (Lozys, 2004). Distributions of these species are,

therefore, confined to coastal areas and rivers but could

increase if salinities in the Baltic fall. Growth of 0-group
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Fig. 6 Relationship between recapture rate (%; as an indicator

of survival rate) of Carlin-tagged wild Atlantic salmon smolts

and mean sea surface temperature (SST) in June at the islands of

Krunnit, northern Baltic Sea for 19 years during 1972–1999. The

fitted second order polynomial curve explains 31% of the varia-

tion (P 5 0.051) in survival rate (Jutila et al., 2005).
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perch in laboratory experiments was higher at

5 psu than in freshwater, presumably because the

lower salinity imposes lower metabolic costs for

osmoregulation (Lozys, 2004).

Some marine species enter the Baltic seasonally from

the Kattegat, North Sea and open northeast Atlantic.

These species include garfish Belone belone and mackerel

Scomber scombrus. Other species (e.g. some herring

populations) leave the Baltic on a seasonal basis. The

timing of migration to and from the Baltic, as well as the

residence time within (or outside) the Baltic are

determined partly by climatic variables including

temperature. For example, the arrival time of garfish

and its departure from the Baltic occurred earlier in

warm years during 1986–2005 (Jacobsen, 2006).

Residence time varied by ca. 6 weeks and was also

shorter in warm years (Jacobsen, 2006). These

differences in migration behaviour affect not only the

ecology of garfish, but also its role in the food web as a

predator and competitor with other species. Similar

effects of temperature on other migratory behaviour in

other Baltic species remain to be documented.

Glacial relict species. Some fish species (e.g. sea snail

Liparis liparis, four-horned sculpin Triglopsis

quadricornis) living in the Baltic survived the last

glaciation (ca. 10–12 000 years ago). These species

require cold, oxygen-rich water, tolerate low-brackish

salinities (e.g. 5.5–6.5 psu), and are present in low

abundances in especially the northern coastal areas of

the Baltic Sea (Ojaveer et al., 1999). Their narrow habitat

requirements suggest that they will be susceptible to

multiple aspects of expected future climate changes. An

increase in temperature will cause them to move

northwards and/or to deeper water. However, their

northward movement could be restricted by low

salinity, and their movement to deeper waters could

be limited by lower oxygen concentrations associated

with eutrophication and the temperature-related

decrease in oxygen solubility. As a result the habitats

of some of these species will likely become even smaller

as a consequence of climate changes.

Baltic fisheries and their management

Commercial fish catches are dominated by only a

few species (i.e. sprat Sprattus sprattus, herring Clupea

harengus and cod Gadus morhua; Fig. 7). Many other

species, including those mentioned in previous sec-

tions, are exploited but their catches are much lower

and contribute o10% of the total landings (ICES,

2005a). These species include flounder, plaice, salmon,

eel (Anguilla anguilla) and nearshore coastal species

such as whitefish, pikeperch and perch.

Baltic fisheries have been managed by the European

Union and the International Baltic Sea Fisheries Com-

mission until the end of 2005. Since 2006, bilateral

agreements between the EU and Russia have replaced

agreements with the IBSFC. The most important com-

mercial species have quotas and other regulations (e.g.

mesh sizes, closed seasons/areas) intended to promote

long-term sustainability of their populations. The scien-

tific advice for making management decisions about

international fisheries primarily comes from the Inter-

national Council for the Exploration of the Sea (Daw &

Gray, 2005; ICES, 2005a). Management of the fisheries is

partly disaggregated spatially to reflect local differences

in both the fisheries and species biology (e.g. growth

rates, maturity, migration patterns). As a result, inde-

pendent quotas are assigned for different populations

of the same species in the Baltic. The Baltic itself is,

therefore, subdivided into subdivisions for administra-

tive purposes (Fig. 1).

The effects of climate and hydrographic variability on

early lifehistory stages documented above can have

impacts at population levels and therefore how fisheries

are managed. For example, cod recruitment in the

eastern Baltic Sea decreased during the 1980s because

of inadequate salinity and oxygen conditions, and has

remained low except for 1–2 years following the major

inflows in 1993 and 2003 (ICES, 2005a). The stock has

still not recovered to long-term average abundance

(ICES, 2005a). This example indicates that fishing clo-

sures or major quota reductions will not necessarily

ensure population recovery if environmental and other

factors have deteriorated from those observed when the

stock biomass was increasing or high. An analogous

example is the central Baltic dab population which has
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Fig. 7 Total international landings of the three commercially

most important fish species (cod, herring, sprat) in the Baltic Sea

during the 20th century. Triangles, cod; circles, sprat; diamonds,

herring. Data source: (Sparholt, 1994; ICES, 2005a).
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completely collapsed and will not likely recover unless

hydrographic conditions improve substantially in

spawning areas (Temming, 1989; Nissling et al., 2002).

Other examples of failed population recoveries (due to

various causes), despite fishing bans or major reduc-

tions, exist in the literature (Caddy & Agnew, 2004). On

the other hand, continued exploitation of eastern Baltic

cod in the presence of detrimental environmental con-

ditions will accelerate the biomass decline induced by

poor recruitment and will delay and possibly prevent a

recovery of the Baltic cod population at improved

environmental conditions (ICES, 2006a).

Alternatively, when environmental conditions im-

prove, higher catch levels can be sustained because fish

production increases. This situation seems to exist pre-

sently for Baltic sprat whose recruitment is positively

related to sea temperature (Fig. 4). This knowledge has

been used to simulate how fishing and environmental

variability jointly affect the risk for population decline.

For example, assuming current fishing mortalities un-

der warm temperatures typical for the late 1980s–1990s,

there is o0.1% probability that the population during

the next 10 years will fall to levels which would require

implementation of major quota reductions (Fig. 8). In

contrast, if fishing occurred at a precautionary level (i.e.

FPA, which would be a 20% increase over current levels)

and if temperatures fall to levels observed in the mid-

1970s–1980s, then the risk for serious population de-

cline increases to nearly 20% within 10 years. The range

of fishing yields, therefore, depends on both a suffi-

ciently large spawner population to ensure high levels

of egg production, and an environment that promotes

survival of offspring. This result has also been obtained

in a similar modelling analysis of the 10-year develop-

ment of the eastern Baltic cod stock under different

environmental (i.e. salinity-oxygen conditions in cod

spawning areas) and spawner biomass situations (ICES,

2003b).

A look ahead to 2100 and beyond

Current scientific policy and consensus suggests that

there will be at least three major drivers of ecosystem

change in the Baltic Sea during the coming decades.

One driver will be that associated with climate change

(IPCC, 2001; BACC, 2006), including warmer tempera-

tures, increased precipitation (Döscher & Meier, 2004;

Räisänen et al., 2004; Meier et al., 2006) and possible

changes in wind direction and speed (BACC, 2006;

Meier, 2006). The second driver, if fully implemented,

will be a reduction in fishing mortality as a part of the

EU’s obligations to promote long-term sustainable fish-

ing (EU, 1998; Daw & Gray, 2005) and to support

international agreements on Precautionary Approach

to Fishing (FAO, 1995), the protection of biodiversity

(UN, 1992, 2002) and the ecosystem approach to fish-

eries management (Gislason et al., 2000). The latter

driver should lead to changes in the fish community,

population structure and food web interactions. The

third driver, again if fully implemented, will be an

overall reduction in nutrient loading (Gren et al.,

2000). In addition, there will likely continue to be

introductions of non-native species (Schiedek, 1997;

ICES, 2004), including fish (Sapota & Skora, 2005). The

occurrence of introductions and their functional con-

sequences for the Baltic ecosystem and food webs are

difficult to predict (Leppäkoski et al., 2002).

These driving forces (climate change, fishing, eutro-

phication, species invasions) will interact with each

other, and even in isolation would have major and

complex impacts on the Baltic ecosystem. However,

forecasting how fish populations will respond to the

combination of these changes will require much greater

understanding of how food webs are structured than is

presently available (MacKenzie et al., 2002). A few

examples based only (and perhaps naively) on how

climate change might affect fish populations will

illustrate some of the uncertainties and complexities

involved.
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Fig. 8 Probability that simulated sprat spawner biomass falls

below the precautionary approach biomass (BPA 5 275 000

tonnes) under different temperature and exploitation scenarios.

The simulations assume that recruitment depends on both tem-

perature and spawner biomass. }, temperature 5 3.71 (mean

temperature during 1973–1999) and status quo exploitation dur-

ing 1998–2000 (FSQ);. � , temperature 5 2.41 (mean temperature

during 1973–1999 – 1 SD) and status quo exploitation during

1998–2000; squares: temperature 5 2.41 and 1.2� status quo

exploitation during 1998–2000 (1.2�FSQ; reference period for

FSQ was 1998–2000). See MacKenzie & Köster (2004) for details.

PA, precautionary approach; SQ, status quo; F, fishing mortality

rate. Reproduced with permission from Ecological Society of

America.
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Climate change over the next 70–100 years is expected

to raise sea levels by 20–50 cm, increase water tempera-

tures and precipitation in northern Europe and change

the seasonal distributions of warming, cooling and

precipitation (IPCC, 2001; Räisänen et al., 2004; BACC,

2006; Meier, 2006; MacKenzie & Schiedek, 2007). The

rise in sea level will submerge some low-lying coastal

areas. As a result the area of shallow water habitat for

coastal species and size of nursery areas for juvenile fish

of offshore species could potentially increase.

Regarding sea temperatures, recent numerical model

experiments using a regional coupled ocean–atmo-

sphere model driven by global circulation models show

that mean annual surface temperature (SST) in the

Baltic can be expected to increase during the 21st

century by 2–3 1C under the IPCC A2 and B2 scenarios

for future global atmospheric concentrations of CO2

(Döscher & Meier, 2004; Meier, 2006). Even larger in-

creases in SST using the same models and CO2 scenarios

are likely in parts of the Baltic during some seasons

(e.g. a rise of 3–4 1C in spring–summer in the central

Baltic; Fig. 9).

Regarding salinity, past observations (Hänninen et al.,

2000) and ocean-climate process modelling (Omstedt

et al., 2004) show that higher precipitation leads to lower

salinity in the Baltic Sea. While future warmer tempera-

Fig. 9 Average sea surface temperature in the Baltic Sea during 2071–2100 for the four seasons of the year as estimated from a series of

numerical model experiments using a regional coupled ocean–atmosphere model driven by global circulation models under the IPCC A2

and B2 scenarios for future global atmospheric concentrations of CO2 (Meier, 2006). Note that the colour scale differs among the panels.

Each panel is an ensemble average based on outputs from six different combinations of models and scenarios (see Döscher & Meier, 2004

for details). Reproduced with permission from Alliance Communications Group, a divisions of Allen Press Inc.
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tures will lead to higher rates of evaporation (Meier,

2006) and potentially could in principal balance the

increase in precipitation, this situation is not likely for

the Baltic region (Meier, 2006; Meier et al., 2006). Here,

salinity is expected to decrease (Fig. 10) because the

increase in precipitation will exceed the increase in

evaporation (Meier, 2006). These changes in salinity

are evident in a multimodel ensemble approach using

seven different regional models, five global models and

two different CO2 scenarios (Meier et al., 2006). The

magnitude of the expected decrease in salinity (7–47%)

will differ spatially and is predicted to be largest in the

central Baltic (ICES Subdivisions 25–28) and the Belt Sea

(ICES Subdivision 22) (Meier, 2006; Meier et al., 2006).

The combined effects of changes in temperature,

precipitation and salinity, and possibly wind will influ-

ence circulation in the Baltic. In the past, reduced river

runoff has been shown to promote inflows by reducing

Baltic sea level and by intensifying deep currents flow-

ing into the Baltic (Schinke & Matthäus, 1998). An

increase in precipitation and runoff during the 21st

century, as is forecasted for the Baltic watershed (Meier,

2006; Meier et al., 2006), and a change in the seasonality

of runoff, could, therefore, have opposite effects and

reduce the frequency of major Baltic inflows. The in-

crease in precipitation will enhance the surface outflow

of freshwater from the Baltic to the Kattegat and North

Sea. Moreover, the recent occurrence of strong inflows

during warm summers (2002 and 2003) may also be a

Baltic response to global warming (Feistel et al., 2004).

Wind conditions directly and indirectly affect Baltic

fish populations. These effects include for example,

impacts on transport of fish larvae (Hinrichsen et al.,

2005a, b) and on food production for fish larvae via

variations in coastal upwelling (Gidhagen, 1986). If

future climate change leads to changes in wind-induced

circulation, or if the expected changes in temperature

and salinity increase the sensitivity of Baltic circulation

to wind conditions, then larval fish ecology could be

impacted. However, the projections of future wind

conditions in the Baltic regions are very uncertain and

differ widely among models (BACC, 2006; Meier et al.,

2006). As a result, we cannot specify whether future

wind conditions will have beneficial or detrimental

effects on fish ecology.

Considered in isolation, the consequences of the

changes in temperature (warmer) and salinity (lower)

on the major fish populations may be relatively easy to

forecast. For example, warm temperatures improve

reproductive success in fish species near their northern

limits of distribution, including some northern Baltic

herring populations (Kornilovs, 1995; Axenrot & Hans-

son, 2003), the Baltic sprat population (MacKenzie &

Köster, 2004; Baumann et al., 2006) and possibly the

Kattegat sole population. However, an expected reduc-

tion in average salinity (Meier, 2006) will restrict spawn-

ing habitats of these and other marine-brackish water

species (Nissling et al., 2002; Ojaveer & Kalejs, 2005). As

a result the beneficial effects of higher temperature on

the reproduction of some species and populations will

Fig. 10 Vertically averaged salinity (%) in the Baltic Sea (Meier, 2006). The left panel shows the spatial distribution of salinity for the

control period 1961–1990, as derived from the Rossby Centre Regional Climate – Ocean model (colour scale is from 0% to 30% in

intervals of 1.5%). The middle and right panels show the difference in salinity between the control period and the scenario period (2071–

2100) as estimated by two different models for the IPCC A2 CO2 scenario (middle panel, global forcing of the Rossby regional model was

provided by the ECHAM4/OPYC3 model; right panel, global forcing of the Rossby regional model was provided by the HadAM3H

model). See Meier (2006) for details. Reproduced with permsission from Springer-Verlag Heidelberg.
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be partly counteracted by the reduction in salinity. The

relative importance of these two effects is not presently

clear, partly because at the temporal and spatial scales

relevant for fish life-history it is not known by how

much temperatures will rise, by how much salinities

might fall, nor how some of the various fish species

would react physiologically and genetically (ICES,

2005b) to these changes. These concepts are summar-

ized schematically in Fig. 11 and require further inves-

tigation.

Similarly, it is difficult to forecast how the eastern

Baltic cod population will react to future climate

change. Cod egg survival and recruitment is improved

when salinities and oxygen concentrations in deep

water are both high (Plikshs et al., 1993; Vallin et al.,

1999; Köster et al., 2003a). The anticipated reduction in

salinity (Meier, 2006; Meier et al., 2006) will further

constrain cod spawning habitats (Plikshs et al., 1993;

Vallin et al., 1999; MacKenzie et al., 2000). Moreover

higher water temperatures will increase oxygen con-

sumption rates in the deep parts of the Baltic where cod

eggs live, thereby further reducing the size of cod

spawning habitats (MacKenzie et al., 1996). Higher

water temperatures in winter in the western Baltic will

also reduce oxygen concentrations because of the lower

solubility of oxygen in warmer water flowing from the

western Baltic to eastern Baltic deep basins during

winter (Hinrichsen et al., 2002b). Although nutrient

loading is expected to decrease over the coming dec-

ades (Gren et al., 2000), large pools of nutrients and

organic matter in the deep water and sediments of the

Baltic (Conley et al., 2002) and its watershed will persist

for many years (HELCOM, 1996). As a result, oxygen

conditions in the deep layers will only slowly improve

as nutrient loading rates decrease. Lastly, if predators of

cod eggs (e.g. herring, sprat; Köster & Möllmann, 2000a)

benefit more from climate change than cod itself, then

predator–prey interactions among the fish species will

also suppress the cod population.

Consequently, the present clupeid-dominated regime

in the Central Baltic fish community (Köster et al.,

2003b; Alheit et al., 2005) could become stabilized.

However, changes in exploitation have a strong poten-

tial to alter food web structure and thus to modify the

outcome of climate-induced changes. For example, a

lower exploitation of cod would increase the chance of

high reproductive success despite a generally low car-

rying capacity. Surviving cod offspring would increase

predation pressure on sprat, whose biomass would fall,

thereby lowering also the predation by sprat on cod

eggs and Pseudocalanus sp. This interaction would have

a feedback because the reduced sprat biomass would

lead to higher reproductive success of cod and

enhanced feeding conditions for cod larvae, as well as

juvenile and adult herring and sprat. Clupeid growth

rates would also increase (Fig. 5). However, the earlier

considerations on the reproductive biology of cod sug-

gest that the eastern Baltic cod stock will suffer under

future climate change and could collapse completely, as

has happened previously for dab and plaice in the

central Baltic (Temming, 1989; Nissling et al., 2002),

unless some of these negative effects are counteracted

by both lower cod fishing mortality rates and an in-

crease in inflow intensity and frequency.

The interaction between climate change and eutro-

phication will also affect benthic fish in shallow and

coastal areas of the Baltic, including much of the wes-

tern Baltic, Belt Sea and Kattegat. These areas have in

the past been subjected to frequent episodes of anoxia in

the late summer and early autumn (Karlson et al., 2002).
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Fig. 11 Schematic representation of how changes in temperature and salinity could affect recruitment (the annual rate of production of

new individuals, n yr�1) of a species throughout its entire geographic range (solid lines on each panel), and specifically in the Baltic Sea.

Circles shown on panels represent average contemporary (2007) temperature (a) or salinity (b, c) experienced by a Baltic population

relative to the ranges experienced by this species throughout its entire geographical range. The squares in each panel depict future (2100)

conditions experienced by the species in the Baltic Sea. (a) Depicts a species whose geographical distribution in the Baltic Sea is at the

cold end of its thermal range. (b and c) show the present and expected salinity ranges experienced by the species in the Baltic and how

recruitment is affected by these salinity ranges (e.g. via direct physiological effects on eggs or larvae). (c) is similar to (b), except that the

expected salinity range is instead assumed to be sufficiently low to affect recruitment.
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Given that anoxia severity in these areas is partly

temperature dependent (Rasmussen et al., 2003), the

frequency and extent of anoxic events will likely in-

crease with higher temperatures associated with climate

change. These events cause direct mortalities of fish and

their prey (Karlson et al., 2002), and cause fish and prey

to relocate to other areas where feeding, growth and

survival rates may be lower (Pihl, 1994). Hence, benthic

fish species such as cod, plaice, sole and flounder in

these areas may experience higher frequencies of anox-

ia-related declines than in other areas; these impacts

are, however, less likely to affect pelagic species such as

herring, sprat and possible immigrants such as anchovy

or sardine.

Despite the uncertainties and contrasting effects of

how climate change might affect the fish community in

the Baltic region, two general predictions are possible at

the present time. First, a systematic change in the

hydrographic environment, for example towards war-

mer, fresher conditions (Räisänen et al., 2004; BACC,

2006; Meier et al., 2006), will lead to relative changes in

the existing species composition and their distribution

within the Baltic. For example, the ranges of marine

species can be expected to contract, and the habitats of

cold-adapted species whose habitats are presently re-

stricted by warm temperatures, such as salmon (Alm,

1958), can also be expected to shrink.

Second, a decrease in salinity will inhibit invasion by

new species unless they are tolerant to these conditions

(Elmgren & Hill, 1997; Schiedek, 1997; Leppäkoski et al.,

2002). Hence, among those temperate marine fish spe-

cies which have recently been expanding their geo-

graphic ranges northwards (Brander et al., 2003;

Genner et al., 2004; Beare et al., 2005; Perry et al., 2005),

only a small number will successfully colonize the

Baltic because few will be able to reproduce success-

fully in its low salinity (Ojaveer & Kalejs, 2005). A

reduction in salinity, particularly in the Belt Sea (Meier,

2006) where the horizontal salinity gradient in the Baltic

is largest (Voipio, 1981; HELCOM, 2002), will, therefore,

lead to further restrictions in range and biomass of

existing ‘marine’ fish species such as plaice, cod, sole

and sprat, which may not be compensated by immigra-

tion of new species. Moreover, recovery of other marine

species which have already collapsed (e.g. dab) will be

inhibited or perhaps prevented by further reduction in

salinity. These processes could lead to a decrease in the

overall species richness and biodiversity of the Baltic

fish community. Whether the decrease in production

and biomass of marine species will be offset completely

by increases by freshwater species (thereby maintaining

a similar overall level of fish production), is unclear

because of uncertainties in how individual species will

respond to climate change, interactions among species

within the foodweb and rates of adaptation by species

living in the Baltic Sea and also by those which will

immigrate and invade.

The changes in species composition and distribution

will differ spatially, depending on each species’ physio-

logical tolerance for low salinity and the existence of

saline water masses having sufficient oxygen concen-

trations to sustain life stage development. For example,

sprat will still be able to spawn successfully in the

southern and central Baltic, but its spawning habitat

will likely become further restricted in northern and

eastern areas; in contrast the spawning habitats of some

coastal freshwater and brackish species such as perch

and pikeperch could expand. The salinity and tempera-

ture-mediated changes in spatial distribution will affect

fishing opportunities and catches in the Baltic: fishing

fleets whose target species are the more marine species

will have to relocate to different (i.e. higher salinity)

fishing areas, or remain in present locations and target

the existing and any immigrating species which tolerate

brackish conditions.

Climate change will not only alter the abiotic condi-

tions in the Baltic, and therefore only the physiological

suitability of existing fish habitats. Changes in salinity

and temperature, as well as seasonal heat and water

budgets, will also lead to changes in stratification and,

therefore, the characteristics of food webs (e.g. species

composition of the plankton and benthic communities,

timing and duration of spring blooms). For example,

the predicted reduction in ice cover (and therefore

improved underwater light conditions) should lead to

an earlier onset of stratification and the spring phyto-

plankton bloom (BACC, 2006). However, the warmer

temperatures will also lead to an intensification of

stratification, and therefore, less vertical mixing of

nutrients into the photic zone during the postbloom

period. In the open ocean, increased stratification in the

recent (post-1999) warm period has reduced primary

production (Behrenfeld et al., 2006). As primary produc-

tion rates are positively related to fish production and

yield in marine ecosystems (Nixon, 1988; Nielsen &

Richardson, 1996; Ware & Thomson, 2005), overall fish

production might decrease if stratification increases.

These effects might be relatively more pronounced

in the southern Baltic, which is less frequently covered

by ice.

Future climate change will interact with eutrophica-

tion in the Baltic Sea. The projected increase in annual

and winter precipitation will lead to increased runoff of

nutrients (nitrogen and phosphorous) stored in the

Baltic watershed (BACC, 2006). This supply could offset

the negative effects of increased stratification on pri-

mary (and probably fish) production. It is, therefore,

uncertain how the combined effects of climate change
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and eutrophication will affect lower trophic levels and

overall fish production, These topics are, therefore,

active areas of Baltic research (BACC, 2006; Dippner,

2006; ICES, 2006b).

Changes in (past) climate clearly do affect Baltic

plankton and benthic communities. Analyses of long-

term monitoring data demonstrate how the species

composition and biomass of the zooplankton (Viitasalo

et al., 1995; Dippner et al., 2000; Möllmann et al., 2000)

and benthic (HELCOM, 2002) communities in the Baltic

covaries with salinity and temperature. Changes in

these communities affect feeding and growth of herring

and cod larvae, juveniles and adults (Uzars, 1994;

Casini et al., 2004). Recent analysis of Continuous

Plankton Recorder data shows that climate variability

is decoupling links between trophic levels in plankton

food webs in the North Sea and wider northeast Atlan-

tic (Edwards & Richardson, 2004). The decoupling is

due to species-specific differences in phenological re-

sponses to increased temperature (Edwards & Richard-

son, 2004). Similar studies have not yet been conducted

in the Baltic Sea. Decoupling between plankton trophic

levels could be detrimental for fish production, parti-

cularly if the decouplings include the match between

larval fish feeding and production of preferred

zooplankton species (Platt et al., 2003; Edwards &

Richardson, 2004).

These changes in food web structure and functioning

at lower trophic levels have so far not been investigated

in detail in the Baltic Sea but will likely have important

impacts on the fish community and deserve further

study. These effects of climate change, and possible

effects of lowered pH (Orr et al., 2005), on lower trophic

levels require more investigation.

Fisheries management during 21st century climate

change

There are still many uncertainties associated with pre-

dicting how climate change will affect fish production

and fishing activities in estuarine ecosystems like the

Baltic Sea. These uncertainties relate to physiological

and ecological responses to the expected abiotic

changes in local habitats, the specific functional role of

local regions of the Baltic in the lifehistories (e.g. as

spawning, nursery or adult feeding areas) of individual

fish species and the uncertainty associated with regio-

nal models of future climate change (Meier, 2006). The

implications of climate change for the management of

Baltic fisheries are, therefore, difficult to assess at the

present time.

As a first step, however, it can be recognized that

many exploited populations and ecosystems are now

(or are becoming) regulated according to benchmark

(reference) criteria. These criteria are sometimes known

as Ecological Quality Objectives (Whitfield & Elliott,

2002; ICES, 2003a) or biological reference points (Collie

& Gislason, 2001), and can be values of indicator vari-

ables (e.g. biomass of spawning fish of a given species

in a local ecosystem, or area of benthic habitat exposed

to anoxia in summer) for elements of an ecosystem

which society wishes to protect or promote. Many of

these benchmarks are typically defined from past ob-

servations. If future climate change erodes the ecologi-

cal basis for the definition of these criteria (e.g. by

significantly changing species’ habitats or the function-

ality of ecosystems), then new criteria will have to be

developed which will be relevant under future climatic

conditions.

The sensitivity of many existing reference criteria to

climate change is presently unknown and will need to

be investigated (Kell et al., 2005). This could be done in

ways similar to those used to explore how biological

reference points for cod, herring and sprat in the Baltic

are affected by multispecies interactions (Collie &

Gislason, 2001). Revisions will require an increase in

process knowledge of both the climate–ocean system

and the biota, and incorporation of this knowledge into

climatically driven ecological scenario models and man-

agement perspectives (Kuikka et al., 1999; Eide & Heen,

2002; Cook & Heath, 2005; Sissener & Bj�rndal, 2005).

Until this has happened the added uncertainty from

climate change will either require additional precaution

to be incorporated in existing management plans or

more robust reference criteria to be developed and

applied. In the case of exploited fish populations, re-

ference levels could be based on levels of fishing

mortality ensuring that local populations have a high

probability of being sustainably exploited, rather than

being based on historically defined levels of spawner

biomass (Kell et al., 2005). This approach is being

attempted for the eastern Baltic cod stock (ICES,

2005a). Hence, fish populations whose biomasses fall,

partly due to climate-related changes in spatial distri-

bution, would become exposed to much lower, includ-

ing zero, fishing mortality. Actions such as these could

be components of long-term management strategies for

adapting to the effects of future climate change on

fisheries.

As an example of how climate change and fishing

might affect Baltic fish populations, it is useful to

consider cod, and in particular how its intraspecific

genetic diversity might change in future. The eastern

Baltic cod population (ICES Subdivisions 25–32) is

genetically distinct from other cod populations in the

Atlantic (Nielsen et al., 2001) and physiologically

adapted for reproduction in the brackish salinity of

the Baltic (Nissling & Westin, 1997). However, in some
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years even these adaptations are insufficient to ensure

reproductive success (Köster et al., 2005). Continued

high fishing pressure in combination with frequent

periods of detrimental environmental conditions for

egg survival suggests that this population may collapse

(Jonzen et al., 2002; ICES, 2005a), as happened to the

central Baltic dab and plaice stocks during the 20th

century (Temming, 1989). If the eastern Baltic cod

population were to collapse, then recovery would be

very slow or perhaps impossible even under low or no

fishing mortality. Long recovery time is expected be-

cause the local genotypes (Nielsen et al., 2001) would be

eliminated and because cod immigrating from more

saline areas (e.g. Belt Sea, Kattegat) are not adapted to

reproduce in brackish environments (Vallin et al., 1999).

Moreover, evolutionary rates of genetic change by fish

populations are generally likely to be slower than the

rates of environmental change expected in the 21st

century (ICES, 2005b). It is likely that reproduction by

the eastern Baltic cod population will become increas-

ingly stressed during the 21st century if salinities fall

and temperatures rise. As a consequence, fishing mor-

tality rates should be reduced to low levels, e.g. a target

fishing mortality of 0.3 or less as suggested by ICES

(2006a), to help conserve this local population.

Conclusions

We have identified some of the main consequences of

climate change for the Baltic Sea fish community and its

fisheries. The expected combination of a rise in tem-

perature and a decrease in salinity will result in a

decrease in abundance and habitat occupied by marine

species in the Baltic. In contrast, habitats of freshwater

species, particularly those whose growth or survival are

enhanced by warmer temperatures, will increase. These

changes in the fish community will affect fisheries and

may require modifications to existing fisheries manage-

ment policies. The specific hydrographic features of the

Baltic Sea, and how these will change in the future as a

result of climate change, make longer-term predictions

of fish stock development uncertain. The uncertainty

arises because at least two key abiotic factors (i.e.

salinity and temperature) will change simultaneously

and because these changes will have counteracting ef-

fects on biological phenomena. The relative sensitivity

of fish ecology including species interactions to concur-

rent changes in both variables is not yet precisely

known. Furthermore, climate change will directly via

atmospheric forcing and indirectly via the changed

salinity balance affect other key hydrographic charac-

teristics, such as hydrodynamics (e.g. inflows into the

Baltic and thus oxygen concentrations in deeper water

areas). New process knowledge of how fish production

and food webs are affected by both fishing and climate

variability, together with historical information about

fishing practices and yields under different combina-

tions of environmental variables, will improve evalua-

tions of how fish stocks and fisheries might develop and

can be managed under climate changes.
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B (2004) The timing of spawning migration: implications of

environmental variation, life history and sex. Canadian Journal

of Zoology, 82, 1864–1870, doi: 10.1139/Z04-184.

Daw T, Gray T (2005) Fisheries science and sustainability in

international policy: a study of failure in the European union’s

common fisheries policy. Marine Pollution, 29, 189–197.

Dippner JW (2006) Future aspects in marine ecosystem modelling.

Journal of Marine Systems, 61, 246–267, ISI:000239868000009.

Dippner JW, Kornilovs G, Sidrevics L (2000) Long-term varia-

bility of mesozooplankton in the Central Baltic Sea. Journal of

Marine Systems, 25, 23–31.
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MacKenzie BR, Köster FW (2004) Fish production and climate:

sprat in the Baltic Sea. Ecology, 85, 784–794.

MacKenzie BR, Schiedek D (2007) Daily ocean monitoring since

the 1860s shows unprecedented warming of northern

European seas. Global Change Biology, doi: 10.1111/j.1365-

2486.2007.01369.x.

MacKenzie BR, St.John MA, Plikshs M, Hinrichsen H-H,

Wieland K (1996) Oceanographic processes influencing seasonal

and interannual variability in cod spawning habitat in the eastern

Baltic Sea. ICES Conference Meeting 1996/C 1 J:4.
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