GKSS Research Centre, Geesthacht, Germany

Global climate models

Norrköping, October 2010 Climate Modelling School

Eduardo Zorita

Stockholm in summer today

Stockholm in summer 20 thousands year ago

May 2008, near Barcelona

October 2009

-How the climate has changed in the past

-External drivers of climate change

-Climate models, climate projections and uncertainties

dennet 11

Scotland glacier remnants

Reconstructed Northern Hemisphere temperatures in the past two millennia

Medieval Warm Period ->Little Ice Age ->Recent Warming

Main climate forcings in the period **7000BP** to present are:

-Orbital forcing, due to slow changes in the Earth's orbital parameters. The precession of the <u>perihelion</u> (period ca. 19000 years), <u>obliquity</u> (period ca. 40000 years) and <u>eccentricity</u> (period ca. 100000 years). This forcing can be accurately calculated.

-CO2 and CH4 concentrations. Derived from the concentrations in air bubbles trapped in ice cores

-*Intrinsic solar irradiance*, caused by internal solar dynamics. Derived from concentrations of the isotopes C14 and Be10 in ice cores. Produced by cosmic rays, their production rate is modulated by the solar open magnetic field

- Volcanic forcing, caused by the production of stratospheric aerosols from sulphate volcanic eruptions

External forcings

Derived from C14 concentrations in tree rings, Weber and Crowley (2004), and from Be10 in ice cores, Crowley (2000).

w/m2 Solar constant w/m2 Net radiative volcanic forcing 0 1369-1368 1367 -5 1366-1365--10 1364 1363-**Ice-core** 10Be + sun acidity spots -15 1362-1000 1100 1500 1600 1700 1800 1900 2000 1200 1300 1400

Shortwave radiative forcing

year A.D.

External forcings of 20th century climate change (without volcanoes)

Level of Scientific Understanding

Total anthropogenic forcing in 2100 : 6.7 (4.2-9.1) w/m2

The greenhouse effect

The radiation balance of the Earth

Units Wm⁻²

The greenhouse effect

The radiation balance of the Earth

Units Wm⁻²

The Earth has multiple ways to react, and to simulate this reaction is difficult

The radiation balance of the Earth

-Increase surface temperature

-Increase evaporation

-Increase cloudiness

-Increase ocean heat-storage

All simultaneously

Some important climate feedbacks (+,-,uncertain)

Black-body: increased temperatures increase the outward long-wave emission

Water vapor feedback: Warmer ocean temperatures increase evaporation
-> atmospheric humidity -> water vapor greenhouse forcing

Cloud feedback: warmer temperatures change cloud cover -> short wave and long wave radiation forcing . <u>Sign depends on cloud type, cloud location</u>

Surface albedo: warmer temperatures melt snow and ice -> albedo decrease

Lapse-rate feedback: decreased vertical temperature profile decrease the atmospheric greenhouse gas forcing

Many other feedbacks involve vegetation, soil moisture, oceanic circulation, carbon cycle, etc

The complexity of the climate system

Primitive Equations

Climate models

Always work in progress....

View from German Climate Computing Centre, Hamburg

What is (in) a climate model?

A computer program (0.5 mill pages) that was written to represent: -air flows from high pressure to low pressure

- -the Earth is round and rotates
- -hot air is lighter than cold air
- -solar radiation is absorbed and reflected by all materials
- -infrared radiation is absorbed and emitted by all materials
- -water vapor condenses below certain relative humidity threshold, clouds are formed. And it may rain
- -Warm water warms the air, warm air warms the water surface
- -Rain makes sea water fresher, evaporation makes seawater saltier

-water masses flow from high pressure to low pressure
-winds exert a drag on ocean surface. currents arise
-warm water is lighter than cold water
-salt water is heavier than fresh water

Climate models replicate the observed global T evolution using observed forcings

-Uncertainty in aerolsol forcing -Different climate model sensitivity

Some numbers of climate models

- Spectral (spherical harmonics) or finite differences schemes

-Fortran code – with some pieces of C code-5x10⁵ lines

-On non-massive parallel machines (10^1 nodes) ,

model -year takes ~ 4 hours

-Size of model output GB per model-year

-Typical length of simulations:

100-1000 years

1

~ 1

Where do the limitations of climate models lie ?

European part of the land-sea mask for different T-model resolutions

a) T21

b) T42

c) T63

Dynamical atmospheric processes

Dynamical atmospheric processes represented in a global climate model

Important examples of parametrizations in a climate model (atmospheric sub-model)

Parameter	Physical process		Values used		
		Low	Middle	High	
Droplet to rain conversion rate (s^{-1})	Cloud	$0.5 imes 10^{-4}$	1.0×10^{-4}	4.0×10^{-4}	
Relative humidity for cloud formation	Cloud	0.6	0.7	0.9	
Cloud fraction at saturation (free trop.)	Cloud	0.5	0.7	0.8	
Entrainment rate coefficient	Convection	0.6	3.0	9.0	
Time-scale for destruction of CAPE (h)	Convection	1.0	2.0	4.0	
Effective radius of ice particles (µm)	Radiation	25	30	40	
Diffusion e-folding time (h)	Dynamics	6	12	24	
Roughness length parameter (Charnock)	Boundary	0.012	0.016	0.020	
Stomatal conductance dependent on CO ₂	Land	Off	.—	On	
Ocean-to-ice heat diffusion coefficient $(m^2 s^{-1})$	Sea ice	2.5×10^{-5}	$1.0 imes 10^{-4}$	$3.8 imes 10^{-4}$	

Table I. Some model parameters perturbed by Murphy et al. (2004).

A representative list of the model parameters perturbed by Murphy et al. (2004) together with the physical process they are associated with and the perturbed values used.

Dynamical oceanic processes

Dynamical oceanic processes represented in a global climate model

Major consequence of limited resolution : clouds

- grid boxes are typically 250 km wide and 1 km high
- processes important for cloud formation happen at much smaller scales
- it is very difficult to represent effects of clouds and small scale processes only in terms of grid box mean properties

clouds and small-scale circulations

About 65% of the Earth surface is covered by clouds at any time

Tropic

Extratropics

Types of clouds and its radiative properties

Clouds: the known unknown largest source of uncertainty in climate projections

Uncertainty due to the unknown initial conditions

Sources of uncertainty in climate projections

Structural uncertainty: Is the climate model 'correct'

Use many good climate models

Parametrical uncertainty : is the parametrization correct

Use many good different parametrizations

Uncertainty in the initial conditions

Use many different initial conditions

Ensemble of simulations

Climate projections: assuming scenarios for future emissions

Essential IPCC climate projections

<u>Surface temperature</u>: Stronger warming in winter, high latitudes and over the continents <u>**Precipitation:**</u> increase at high latitudes, decreases in the subtropics, more uncertain

Estimating uncertainty...

Certanty

UnCertainty

small scale, precipitation

Large-scale, temperature

