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® Global and regional climate change in the 21stC
" Need for regional climate models (RCMs)

® RCMs and how they simulate the recent past
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® Use of RCMs for simulation of future (and past)
climates

B Some considerations



Global mean near surface warming (°C)
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Future global warming SMHI
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The climate system SMHI
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Characteristic time scale (s)

Time and length scales
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In addition: cloud physical processes, droplets, aerosols, radiative
processes at length scales down to 102 m



Regional climate modeling SMHI

Primary benefit is the increased resolution that leads to a more
detailed regional forcing and a greater number of proces ses that
are explicitly resolved by the model

Temperature, humidity, wind speed, pressure



Rationale for downscaling SMHI

MSLP and precipitation (DJF) for the period 1961-199 O
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The Rossby Centre regional climate model SMI'“

u RCA3.0: Atmosphere, land surface, lakes

. = Resolution: ca (6.25), 12.5, 25, 50 km
. =, "  Time step: 15(25km)-30(50km) min.
L ' . Domains: Europe, Arctic, S. Africa,

North and South America
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The Rossby Centre Regional Climate Model RCA3: Model d  escription and performance.
Samuelsson et al., Tellus, published online. DOI: 1 0.1111/}.1600-0870.2010.00478.x




Two basic types of regional modelling SMI'“

= A "perfect-boundary” = A GCM-driven simulation,
simulation, for for
®" model development ® climate scenarios
& evaluation = extended climate
® regional reanalysis variability studies
(cf. detection, " past climates

Impact studies)



What are so called ”"Perfect-boundary

conditions”? SMHI

" The best representation of the actual evolution of the 3D-
state of the atmosphere for long time periods back in ti me
(back to ~ 1950-60) are the so reanalysis products (ava ilable
from ECMWF, NCEP, JMA):

2-metre temperature December-February

Build on observations as
assimilated with a forecast
model.

Example:
2m-temperature from
ERA40 (ECMWF)
1979-2001




How good is RCA3?

16

OBS

Temperature and MSLP in winter (DJF) 1961-1990

BIAS (model — obs)

Kjellstrom et al., 2010




More detailed processes/models SMHI

" The Rossby Centre regional climate model (RCA3) contains a lake

model (FLAKE). Improves the seasonal cycle of surface temperature
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Kjellstro6 m et al., (2005)



Near-surface temperature in RCA3

Bias in seasona mean T, (opl)

PDFs of daily mean T,,(opl)

vs. (CRU+E-OBS2+Wilmott)/3
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RCA3

Precipitation in RCA3 SMHI

RCAS forced by ERA40
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Precipitation in RCA3

Precipitation (mm/month)

Precipitation [mm/month)
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Sweden
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Precipitation in RCA3 SMHI
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How good are RCMs at reproducing the
recent past climate in Europe? SMHI

The large-scale circulation given by the boundary conditions is
realistically downscaled in RCMs

Daily mean temperatures generally within £1-2<T from ob servations
on a seasonal mean basis

The seasonal cycle of precipitation is generally well captured
although biases in individual models can be of the order of £100%
for some regions/seasons

Larger errors In extremes

Too many days with weak to moderate precipitation in northern
Europe and too few dry days

Most attention has been on evaluating temperature and precipitation

Given good boundary conditions RCMs has the potential of
producing a realistic climate
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Two basic types of regional modelling SMI'“

= A "perfect-boundary” = A GCM-driven simulation,
simulation, for for
" model development = climate scenarios
& evaluation = extended climate
® regional reanalysis variability studies
(cf. detection, ® past climates

Impact studies)



How to simulate transient climate change

in 2a RCM? SMHI

Regional simulations

Results archived from a GCM-run /v
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Time =———>

Present-dqy ora  Climate scenario
"control” climate

Time slices (1961-1990) (2071-2100)
Continous simulations (1991-2100)



Future climate change in Europe SMHI

Climate change (2080-2099 vs 1980-1999), A1B emissions scenario, average of 21 GCMs
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Christensen, et al. 2007: Regional Climate Projectio  ns. In: Climate Change 2007: IPCC AR4 WGI




Need for more than one scenario!

Temperature change ('C)

Climate change in Northern Sweden:

Comparing 2071-2100 vs 1961-1990 (SRES A1B)
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Climate change experiments at the
Rossby Centre SMHI

= 16 simulations with RCA3.0 set up on the ENSEMBLES  domain. All simulations
are at 0.44°(~50 km) horizontal resolution

v’ 16 transient climate change experiments for (1951) 196  1-2099 (2100) with
forcing according to 20C3M (1961-2000) and SRES-scena rios (2001-2100)

v’ 1 reference (1961-2002) experiment with boundary data  from ERA40

= Radiative forcing in RCA3 is implemented in terms of e quivalent CO ,
concentrations

= Reference period (1961-1990) evaluated against E-OBS ( ENSEMBLES gridded
observational climatology), ERA40 and CRU TS2.1

= Seasonal mean MSLP, T ,,,, precipitation and 10 m wind speed

Kjellstrom, E., Nikulin, G., Hansson, U., Strandber g, G. and Ullerstig, A., 2010. 21st century changes in the
European climate: uncertainties derived from an ens emble of regional climate model simulations. Tellus :
published online. DOI: 10.1111/}.1600-0870.2010.004 75.x

Nikulin, G., Kjellstrom, E., Hansson, U., Jones, C. , Strandberg, G. and Ullerstig, A., 2010. Evaluatio n and
Future Projections of Temperature, Precipitation and W ind Extremes over Europe in an Ensemble of
Regional Climate Simulations. Tellus, published onlin e. DOI: 10.1111/;.1600-0870.2010.00466.x




Changes in winter temperature SMHI

2m temperature Winter (DJF) SCN: 2071-2100 CTL: 1961-1990
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Daily temperature statistics
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Changes in cold extremes SMHI

20-yr ret. values of T2min | SCN: 2071-2100 CTL: 1961-1990
RCA (6 GCMs) CTL RCA (6 GCMs)
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Changes in summer precipitation SMHI
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Change in wet extremes SMHI

Change in 20-year return values of daily precipitation amounts for summer (JJA)

RCA (6 GCMs) CTL RCA (6 GCMs) RCA (ECHAMS) RCA (HADCM3)
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Change compared to 1961-1990 SMHI
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Climate models represent natural

variability

2-meter temperature, WINTER (DJF) MEAN, CTL:1961-1990 SCN:

ECHAM5 A1B-1 (50km) ECHAMS5 A1B-2 (50km)
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Note — changes in wintertime temperatures in NE Europe
IS one of the most pronounced CC signals.
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Regional climate change in Europe SMHI

> Projected climate change in Europe is large
u Largest temperature increase in the north in winter and in the south in summer
u Precipitation increase in northern Europe and decrease in the south
u Changes in extremes are larger than corresponding changes in means
B Extremes of tomorrow are different than those of today

> Ensembles of RCM scenarios (like the Rossby Centre ensemble) allows
us to better illustrate aspects of climate change and its dependence on

® Emission scenario — most Important in the 2nd half of the 21st century
® Model formulation — important both in the near and distant future
| Natural variability — most important in the nearest decades



RCMs can be used also for past climates

Glacial

Insolation
Orbital year
CO,
CH,

N,O

Ozone
Sulphate

Dust, sea salt
Ice sheets
Land-sea distr.
Sealevel

Topogr., bathym.

Vegetation

1365 Wm'2
1990

750 ppm,

RP (1714 ppb,)

RP (311 ppb,)

PI

PI

PI

RP (Excluding GIS)
RP

RP [+7 meters]

RP (Excluding GIS)

RP/ GHG

1365 Wm'?

21 kaBP
185 ppm,
350 ppb,
200 ppb,
Pl

Pl

Pl /Pl x3
ICE-5G
ICE-5G
-120m
ICE-5G, RP

RP/LGM

1365 Wm'?

44 kaBP
200 ppm,
420 ppb,
225 ppb,
Pl
Pl
Pl

N&slund, CLIMBER?2, ICE-5G
ICE-5G [Whitehouse], RP

-120 m [-70 m]
ICE-5G [Whitehouse]

RP




Temperature climate in a glacial cycle sM|.||
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Are RCMs comparable? SMHI

PJA, T, max, 95t percentile |

=  Change in daily
temperatures in 10

RCMs in the common
PRUDENCE GCM
(HadAM3H/A2)
experiment.

= 2071-2100 vs 1961-
1990

IDJF, T,pmin, 5 percentile |

Kjellstrom et al., 2007
Climatic Change




Issues of parameterization SMHI

How to distribute clouds?

Maxiﬁum
‘ M-R
Random
Real clouds | NN Real clouds ||
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Maximum M aximum—Random Random Minimum




Horizontal resolution in a RCM
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How representative are observations? SMHI

Example from Stockholm
® Spatial inhomogeneities
land / water .

forests / open areas
rural / urban areas

Lunden, B., 1987. Satellite raphy a Study of a Landsat-5 Sub-Scene over Stockholm.

® Temporal inhomogeneities

Geografiska Annaler. Serie sical Geography, Vol. 69, Nr. 3/4. 367-374.
Changing local conditions

| : : 1 I-
Relocation of instruments ' H Ew ' - ! : I

- R e

. . 1 |
Changing instruments s+
Urbanization

Moberg, A., H. Bergstrom, J.R. Krigsman, and O. Svanered. 2002. Daily air
temperature and pressure series for Stockholm (1756-1998). Climatic
Change 53, 171-212.



Making use of high-quality observations SMHI

May help improving parameterisations for subsequent use in GCMs

Maximum M aximum—Random

ey -5.- LA

Afternoon cloud frequency in July according to the
SCANDIA 1991-2000 cloud climatology from NOAA AVHRR



Is the horisontal resolution adequate? SMHI

Precipitation during summer (JJA) 1987-2007 Precipitation in July
1961-1990
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Are all relevant processes represented? SMHI

European hotspots — Scandinavian mountains

Annual change in fraction Spring albedo decreases more in
of deciduous trees interactive RCA-GUESS
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Limitations in RCM scenarios SM|'||

RCMs have errors (e.g. too few dry days)

RCMs are not fully evaluated, partly due to lack of good
observational data at the resolution of the models

Horisontal resolution in many RCM scenarios is still
relatively coarse

Forcing conditions from GCMs may not be realistic (e.g.
too zonal)

RCM scenarios are not always consistent with the
scenarios in the GCMs (e.g. different description of
aerosols, land use, etc)

RCMs do not include all relevant processes (e.g.
coupled models)

Although there are quite many RCM scenarios they don't
sample the full range of GCM scenarios (that in turn
does not sample the full range of uncertainty)



Horizontal resolution 50km SM|'||




Schematic view of the uncertainties in
climate change as a function of time SM|'||
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Change in winter (DJF)
temperatures
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Changes in summer temperatures SMHI

2m temperature Summer (JJA) SCN: 2071-2100 CTL: 1961-1990 (SLP: 1 hPa)

RCA (6 GCMs) CTL RCA (6 GCMs)

RCA (ECHAMS)
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Changes in winter precipitation

Precipitation Winter (DJF) SCN: 2071-2100 CTL: 1961-1990 (SLP: 1 hPa)
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Change in winter (DJF) wind speed SMHI

Wind Winter (DJF) SCN: 2071-2100 CTL: 1961-1990 (SLP: 1 hPa)
RCA (6 GCMs) CTL
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Wind extremes SMHI
20-yr return periods in  W,,ox CTL: 1961-1990 SCN: 2071-2100

20-yr ret. values of max gust wind | SCN: 2071-2100 CTL: 1961-1990

RCA3 (6 GCMs) CTL RCA3 (6 GCMs) RCA3 (ECHAMS5) RCA3 (HADCM3)
/WQ % /vé
?}J — i’qﬁ ®E‘b

] m/s SCN-CTL
2 4 6

v" increasing over the Barents Sea (due to less sea ice)

v’ tendency for increasing wind extremes over the Baltic Sea

v" ensemble mean is sensitive to the number of simulations o
Nikulin et al., 2010



