

Joel Dahné Swedish meteorological and hydrological institute

In this presentaion

Goals (deliverables)

Indata

HYPE model

Calibration/Evaluation

Simulation results for Future climate and reduction scenario

Goals (deliverables) -Input to oceanographic models

Predicted discharge at catchment outlets 1960-2100

Net load of N and P to the sea, 1960-2100

Indata for a pan-Baltic model

Topography: HYDRO1k
Landuse and Soils: ECOCLIMAP European Soils Database
Forcing Data (meteorology): ERAMESAN (Patched) ECHAM5(KNMI) + RCA3(SMHI)
Agricultural Practices Data: CAPRIS-data(agg-eco-model)
Atmospheric Deposition Data: MATCH model (SMHI)
Point sources and wwt EEA, WHO, EUROSTAT

•Observed water quality (N & P): EEA •Observed Runoff GRDC + BALTEX

Topography

Meteorology Landuse

Runoff

Quality

Program for raster indata preparation WHIST/

5128 sub catchments Median size = 325km²

HYdrological Predictions for the Environment (HYPE) model

Soil classes (7)

+

Landuse classes (13)

=

SLC classes (55)

Total: 78 000 Hydrological response units in 5128 sub catchments

Processes in hydrological response

Sources for N&P:

- Fertilization
- Atm. Dep.
- Residues
- Mineralization

Sinks for N&P:

- Denitrification
- Crop up-take
- Adsorption

Calibration/Evaluation

Calibration of Water model against observed daily streamflow.

Calibration of Water quality model against observed seasonal and annual concentration in rivers

Most parameters dependent on soil or landuse. => not calibrated to regions!

Proper evaluation yet to be done

	RIVER	AREA km ²
1	VISTULA	193935
2	ODER	111242
3	NEMANUS	97946
4	DAUGUVA	90001
5	NARVA	58216
6	KEMIJOKI	55647
7	GÖTAÄLV	51274
8	GLAMA	41432
9	MUONIO	39206
10	DALÄLVEN	29109
11	KOKEMAENKOJI	27303
12	UMEÄLV	26394
13	INDALSÄLVEN	25810
14	LJUSNAN	20375
15	NORRSTRÖM	19257
16	MOTALA STRÖM	15026
17	LIELUPE	14090
18	BÖLEBYN	13191
19	LIVAJOKI	12588
20	SKELLEFTEÄLV	12294
21	VENTA	8477
22	PARNU	5967
23	KYRONJOKI	4829
24	SIIKAJOKI	4669
25	LAPUANJOKI	4555
26	LJUNGBYAN	4299
27	EMAN	4178
28	WARNOW	3971
29	PEENE	3809
30	GIDEALVEN	3736
31	HELGE A	3642
32	INA	3639
33	ATRAN	3033
34	KASARI	2639
35	LESTIJOKI	2638
36		1995
37	RICKLEAN	1851
38	SLUPIA	1673
39		1574
40	EURAJOKI	1460
41		579
42	PARSETA	443

Some prelimary results

ECOSUPPORT

ECOSUPPORT

Total Nitrogen Yearly load to sea

•Climate scenario: GCM: ECHAM5(KNMI), RCM: RCA3(SMHI)

•Reduction scenario: Loads from Point sources and waste water reduced by 20%

Going from *observation based* forcing data to Regional Climate Models

•Climate scenario: ECHAM5(KNMI), RCA3(SMHI)

•Reduction scenario: Point sources and WWT reduced by 20%

•Climate scenario: ECHAM5(KNMI), RCA3(SMHI)

•Reduction scenario: Point sources and WWT reduced by 20%

•Climate scenario: ECHAM5(KNMI), RCA3(SMHI)

•Reduction scenario: Point sources and WWT reduced by 20%

Evaluating the combined effects of nutrient load reduction and climate scenarios for the Baltic Sea catchment

Preliminary conclusions

• Climate run:

-Increase in phosphorus load due to more intense rainfall

-Decrease in nitrogen load due to deacreased flow => increase in retention time.

Combined effects:

Nutrient loads will decrease

Future work

- Validation of results => Further calibration and model improvement.
- Validate that the model can reproduce changes in external loads of nutrients
- Reduction scenarios from HELCOM-BSAP
- GCM/RCM runs
-

Thank you for your attention

SMHI - Hydrological research department