Changes in Extreme climates of the greater Baltic Sea region since 1851: observations versus simulations

Deliang Chen¹, Tinghai Ou^{1,2}, Alexander Walther¹ ¹Regional Climate Group, Department of Earth Sciences University of Gothenburg, Sweden ²Faculty of Earth Systems & Environmental Sciences Chonnam National University, Korea

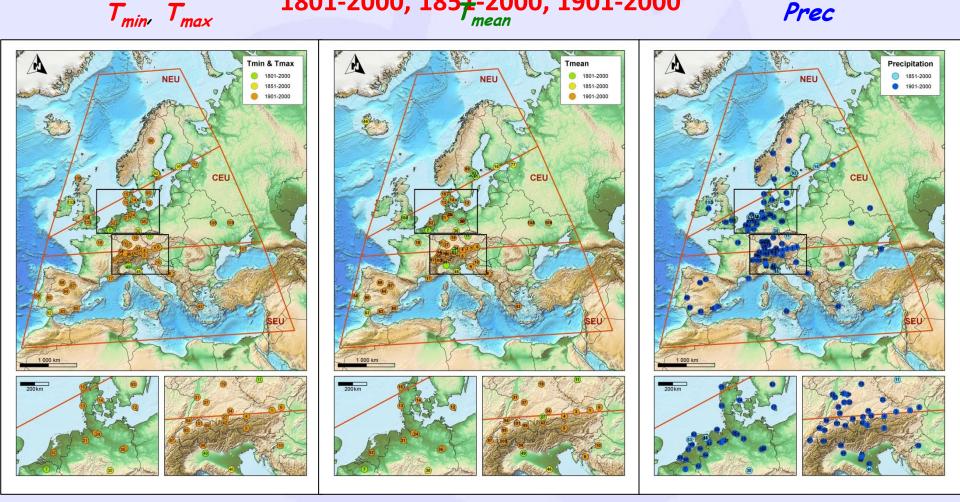
- Climatology and change over the great Baltic Sea region
- Can global climate models capture the climatology and change?

UNIVERSITY OF GOTHENBURG

Trends of extreme temperature and precipitation climates in Europe: A trend atlas of the EMULATE indices

Chen, D., Walther, A., Moberg, A., Jones, P.D., Jacobeit, J., Lister, D.

- Originally Published as internal report 2006
 - Systematic mapping of seasonal extreme climate conditions
 - over Europe
 - during the past 2 centuries (1801-, 1851-, 1901-2000) using
 - 64 climate indices (2014: 27 indices, to be published by Springer)
 - maps, time-series, tables


UNIVERSITY OF GOTHENBURG

Observation for different periods and regions for

1801-2000, 1851-2000, 1901-2000

Prec

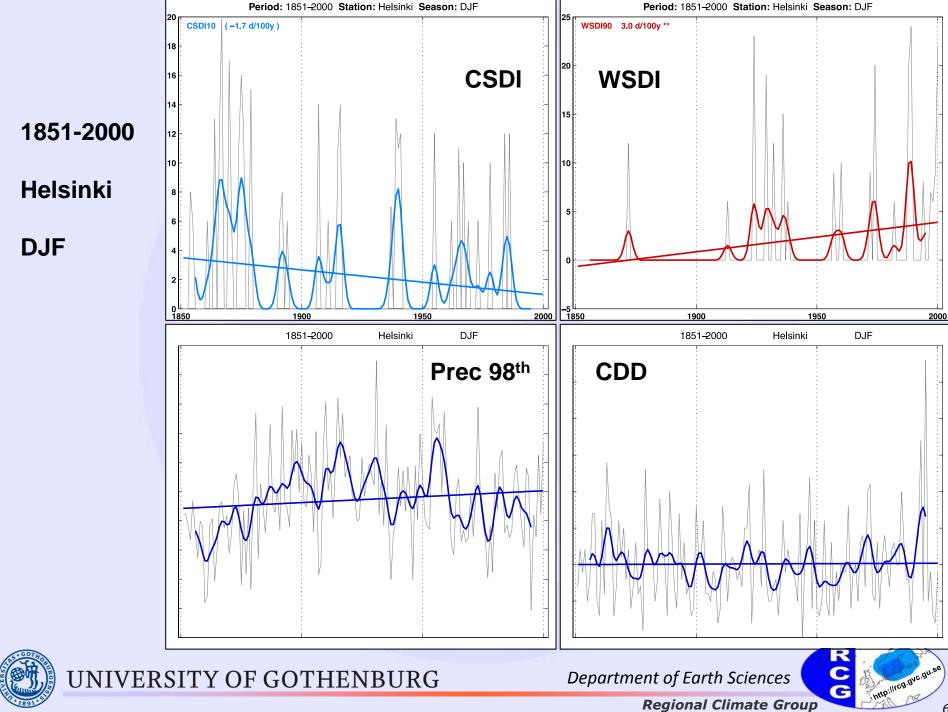
Department of Earth Sciences

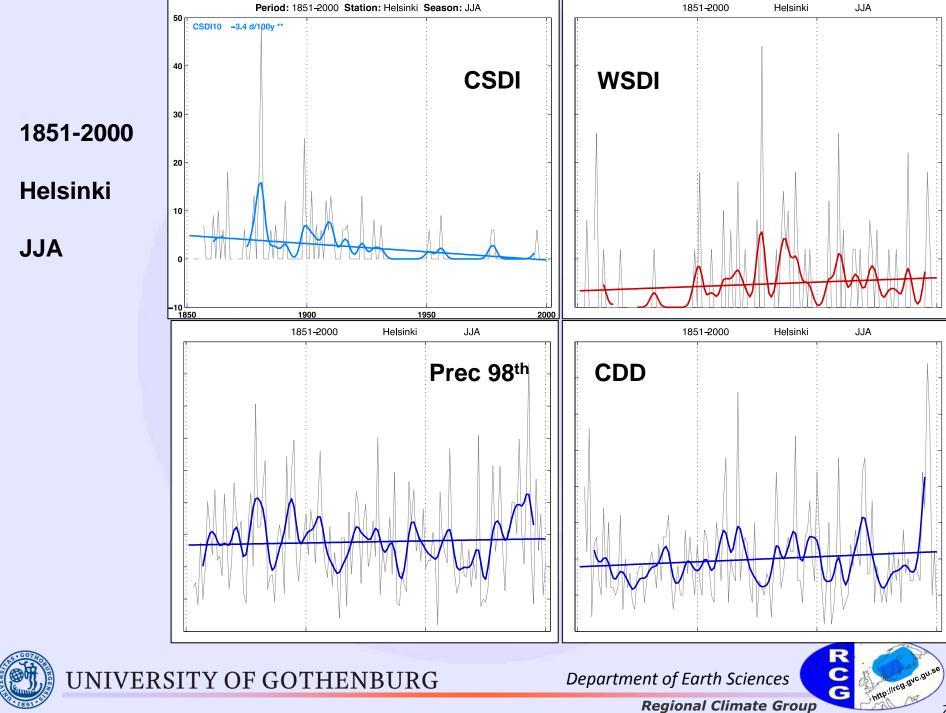
MAM JJA SON DJF unit 100 yr⁻¹ NEU CEU SEU NEU CEU SEU NEU CEU SEU NEU CEU SEU MEANTN *4 0,92 ** 0,75 0,99 1,09 ** 0,85 ** 0,46 ٠ 0,70 ** 1,11 ** 1,04 *4 0,60 ** 0,48 1,19 * [°C] MEANTX 0,85 ** 1,00 0,94 ** 0,65 1,63 ** 0,59 1,63 ** 0,85 ** 1,66 ** 0,48 1,11 * 1,41 ** [°C] TN2P 0,83 0,76 ٠ 0,92 0,68 0,12 1,53 1,36 ٠ [°C] 1,50 1,26 0,60 0,24 1,12 0,98 ** TN98P 1,17 ** 0,71 * 1,46 0,23 0,02 0,19 0.75 ٠ 0,62 ** 0,84 ** 0,17 0,75 ٠ [°C] TX2P 1,61 * 1,66 ** 0,93 *4 1,65 ** 1,45 ** 1,22 ٠ 0,89 -0,08 0,90 0,34 1,03 [°C] 1,13 1,20 ** 1,94 TX98P 0,86 0,98 1,62 ** 0,22 1,57 ** 1,87 ** [°C] 0,40 -0,33 0,96 0,11 -1,82 ** TN2N -2,01 ** -2,05 ** -1,50 *4 -2,09 ** -2,52 ** -2,11** -2,70 -1,48 ** -0,07 -1,28-1,64٠ [d] **TN98N** 1,57 ** 2,03 1,83 ** 1,30 ٠ 1,71 *4 2,44 ** 1,81 ** 1,76 ** 1,12 ** 1,09 ٠ 2,46 ** 1,48 ** [d] -1,97 ** TX2N -2,08 ** -0,96 -2,89 ** -2,48 *4 -0,52 -2,87 ** -2,96 ** -2,03 ٠ -2,39 ** -0,21-0,77 [d] TX98N 2,93 ** 1,90 2,58 ** 2,69 2,50 ** 1,13 0,75 2,44 ** 1,54 0,64 0,92 0,29 ** *4 [d] HWDI ** ** 2,94 1,51 1,17 2,40 3,49 ** 1,02 [d] 0,94 2,21 * ٠ 1,32 0,31 0,12 -0,14 . ٠ WSDI90 2,72 ** 1,80 ** 1,75 ** 1,33 3,13 ** 0,58 ** 2,59 *4 [d] 1,34 1,14 0,24 0,00 2,64 CSDI10 -1,87 -1,20 ** -1,29 -2,05 ** -0,75 -1,58** -2,10 ** -2,68 -1,05 * -1,71 -0,11-1,97[d] 1,25 ** 0,97 1,15 1,11 ** 0,85 0,82 1,04 ** 0,73 ** 1,19 ** ** 0,33 MEANTG [°C] 0,96 1,16 1,36 0,89 *4 1,25 ** ** ** 0,40 0,97 1,13 * -0,131,27 1,55 TG2P [°C] 1,52 1,21 1,29 1,05 ** 1,52 ** 1,29 ** 0,51 ** ** 0.85 * TG98P [°C] 0,04 -0,27 0.81 1,15 1,17 0.51 0.44 -1,85 ** -2,47 *4 -1,59 ** -3,38 ** -1,71 ** -2,18 * -2,50 ** -2,23 ** -3,24 -1,94 ٠ TG2N 0,17 -0,82 [d] ** ** 1,97 ** ** 2,48 2,39 ** 1,66 * 1.51 ٠ 2.35 1,91 2,15 ** 3,14 1,35 1,02 ٠ 2,73 ** TG98N [d] 15,15 1,89 ** 14,90 PRECTOT 23,99 -5,92 -2,23 2,14 47,21 16,61 -14,98 28,14 34,99 [mm] 1,07 2,22 0,09 1,49 0,11 2,49 ** 2,08 -2,32 1,69 2,64 *4 1,50 PREC98P 0,06 [mm] **R98N** 0,40 0,40 0,02 0,07 0,19 0,23 0,77 ** 0,37 -0,07 0,60 0,53 * 0,42 * [d] 3,67 ** 4,34 ** 3,99 * 5,47 ** **R98T** 2,80 3,27 * 2,66 0,79 3,69 ** 5,67 4,28 ** 0,20 [%] 3,88 ** 2,60 2,64 SDII98p 1,20 2,28 0,20 -0,314,34 ** 0,28 3,13 ** 3,81 ** -1,08** [mm] 0,69 ** 0,63 ** 0,94 ** 0,32 ** 0,01 -0,22 ** 0,07 0,49 ** 0,39 SDII 0,09 0,52 ** 0,57 [mm] 9,04 ** 3,68 5,35 -0,37 6,80 ** 5,55 ** 4,57 R5d ٠ ٠ 0,91 -0,157,44 4,03 1,52 [mm] 3,34 ** 3,26 * 1,77 * 0,72 4,02 ** 2,72 0,50 ** 3,52 * 2,07 R1d 0,26 -0,642,60 [mm] CDD 0,55 0,25 1,65 1,05 0,89 -1,19 -0,75 0,97 2,43 -0,09 0,28 -0,63 [d]

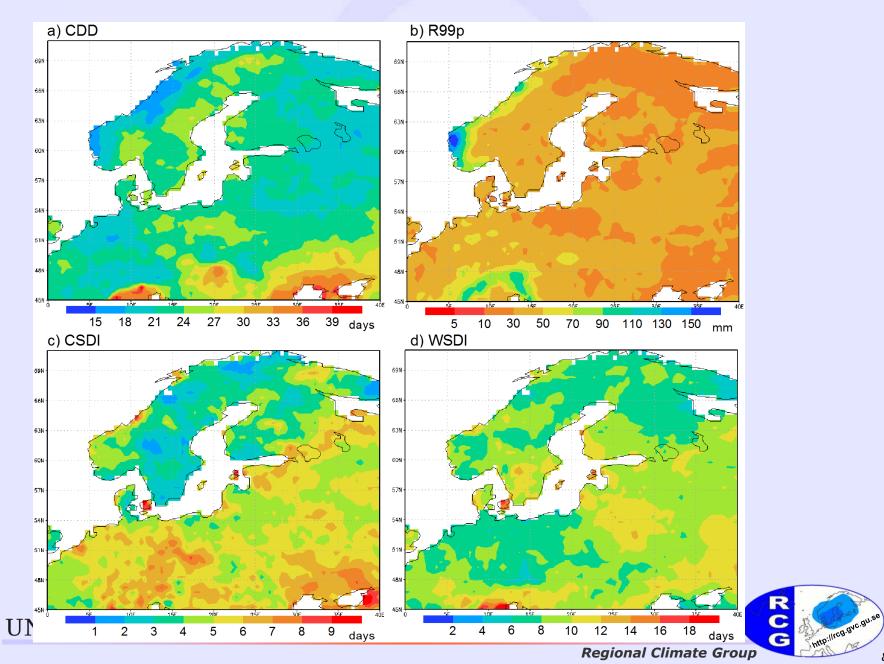
tables: Here, for regions during 1901-2000 all indices. Summary linear trends for Warming/cooling indicated with red/blue colors, wetting/drying with green/brown.

UNIVERSITY OF GOTHENBURG

Department of Earth Sciences

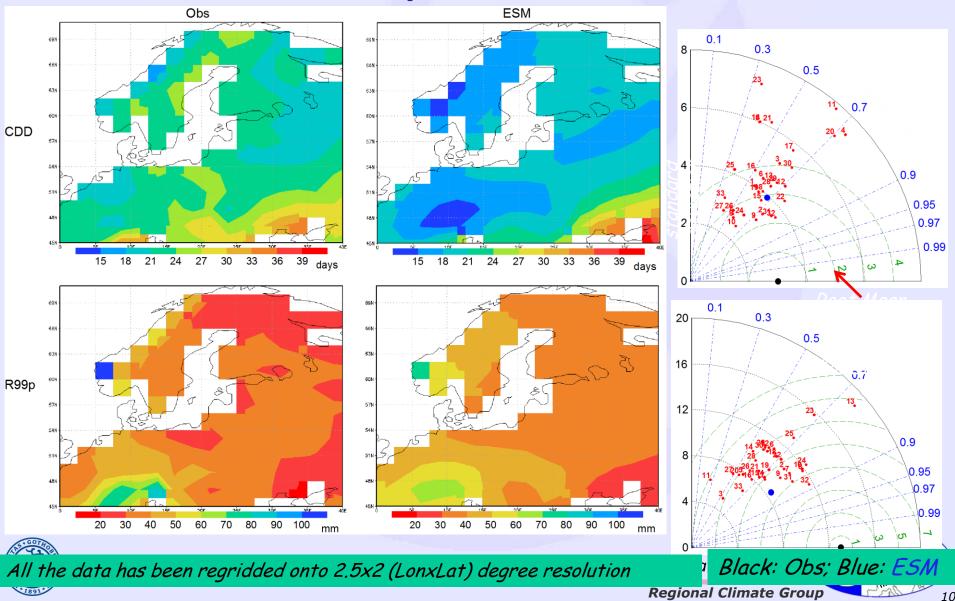

Data and indices

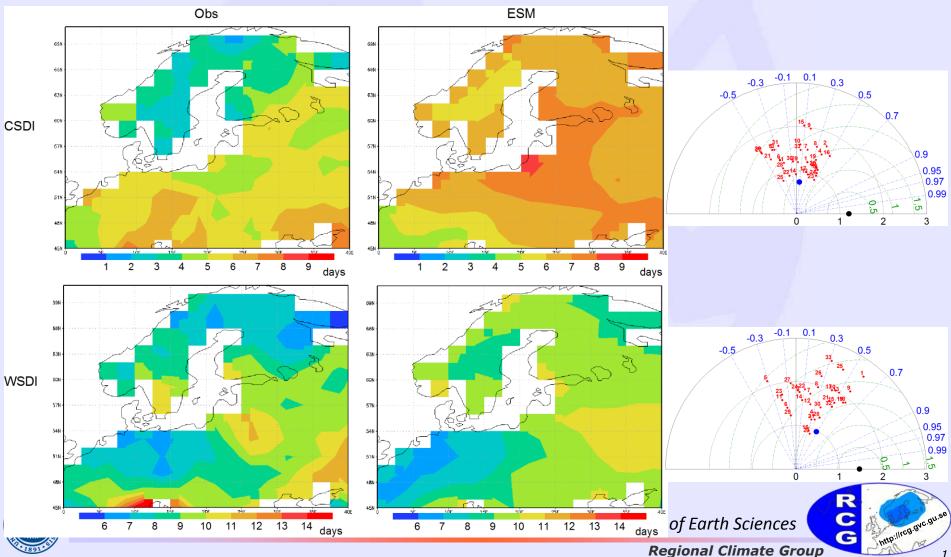

- Data: E-ObsV9.0 daily 0.5x0.5 degree Tmax, Tmin and Prep during 1951-2005 (Haylock *et al.*, 2008)
- 4 annual extreme indices (Donat *et al.*, 2013) with reference period set to 1961-1990 (except for CDD)
 - Consecutive dry days (CDD): Maximum number of consecutive days when precipitation<1mm/day (days)
 - Extremely wet days (R99p): Total precipitation from days
 >99th percentile (mm)
 - Cold spell duration index (CSDI): Number of days when at least six consecutive days of min temperature <10th percentile (days)
 - Warm spell duration index (WSDI): Number of days when at least six consecutive days of max temperature >90th percentile (days)


UNIVERSITY OF GOTHENBURG

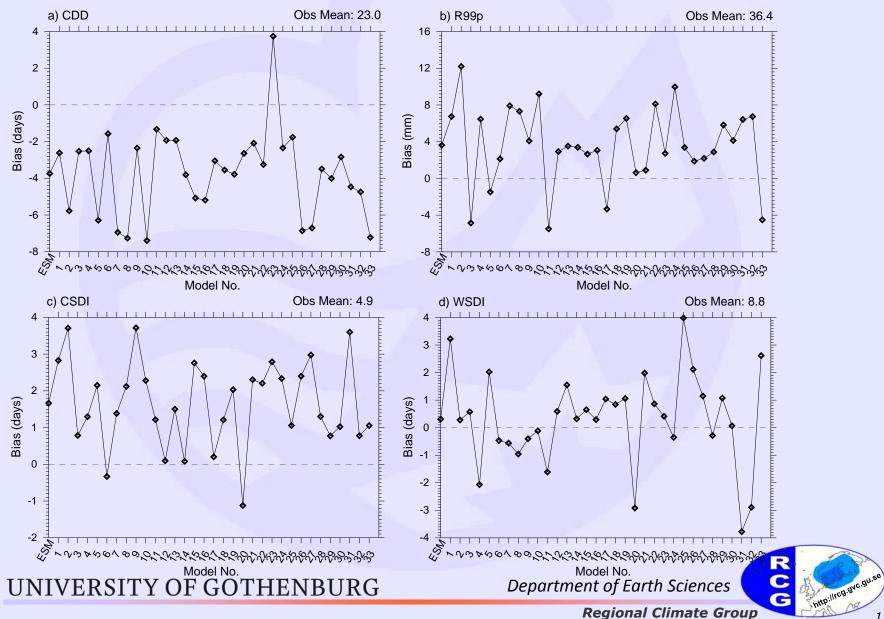
Observed indices averaged during 1951-2005

Model name, center and the number in the Taylor diagram

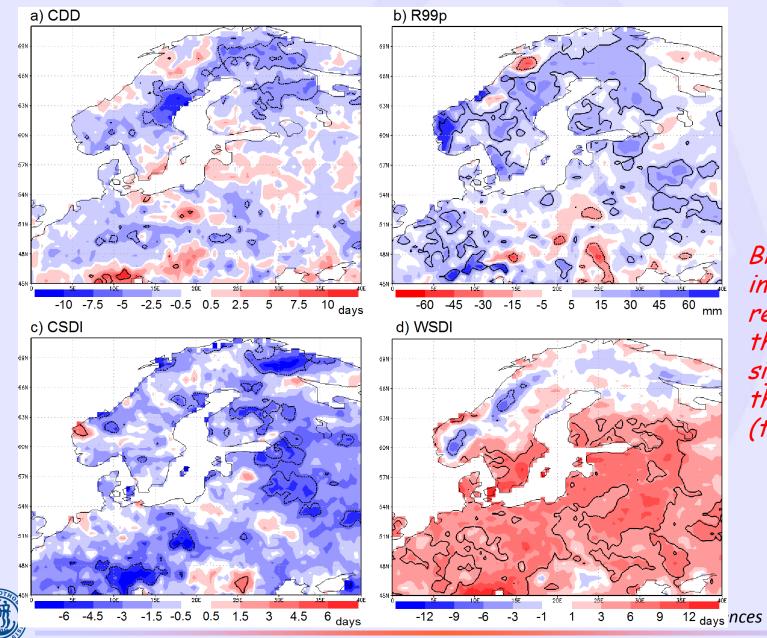

Modeling Center	No.	Model	Modeling Center	No.	Model	Modeling Center	No.	Model
CSIRO-BOM	1	ACCESS1-0	CNRM-CERFACS	13	CNRM-CM5		24	MIROC4h
	2	ACCESS1-3	CSIRO-QCCCE	14	CSIRO-Mk3-6-0	MIROC	25	MIROC5
BCC	3	bcc-csm1-1	NOAA GFDL	15	GFDL-CM3		26	MIROC-ESM
	4	bcc-csm1-1-m		16	GFDL-ESM2G		27	MIROC-ESM-CHEM
GCESS	5	BNU-ESM	МОНС	17	HadCM3	MPI-M	28	MPI-ESM-LR
CCCma	6	CanESM2		18	HadGEM2-CC		29	MPI-ESM-MR
NCAR	7	CCSM4		19	HadGEM2-ES		30	MPI-ESM-P
NSF-DOE- NCAR	8	CESM1-BGC	INM	20	inmcm4	MDI	31	MRI-CGCM3
	9	CESM1-CAM5	IPSL	21	IPSL-CM5A-LR	MRI	32	MRI-ESM1
	10	CESM1- FASTCHEM		22	IPSL-CM5A-MR	NCC	33	NorESM1-M
CMCC	11	CMCC-CESM		23	IPSL-CM5B-LR			
	12	CMCC-CMS						


UNIVERSITY OF GOTHENBURG

Mean 1951-2005 -- Obs vs. Multi-model ESM focus on spatial distribution

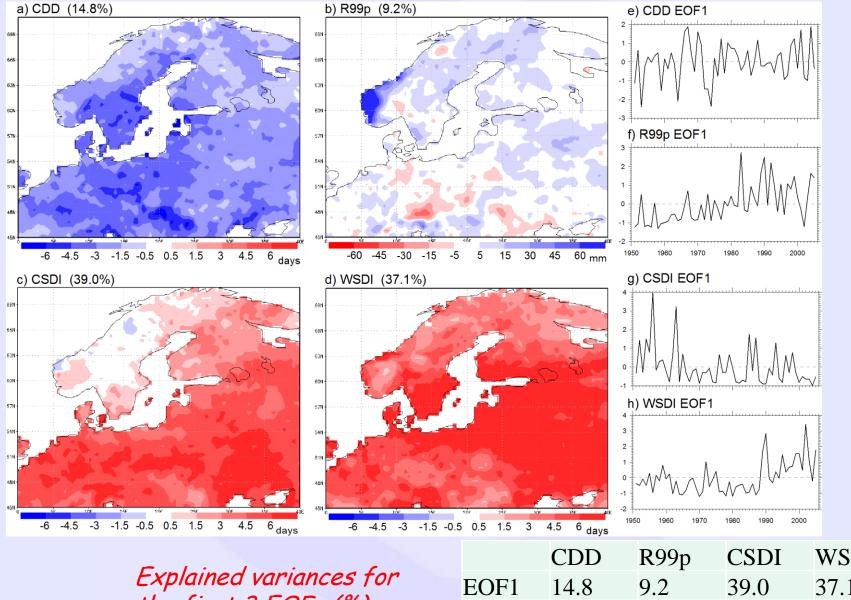


Mean 1951-2005 -- Obs vs. Multi-model ESM


11

Model bias over GBS during 1951-2005

12

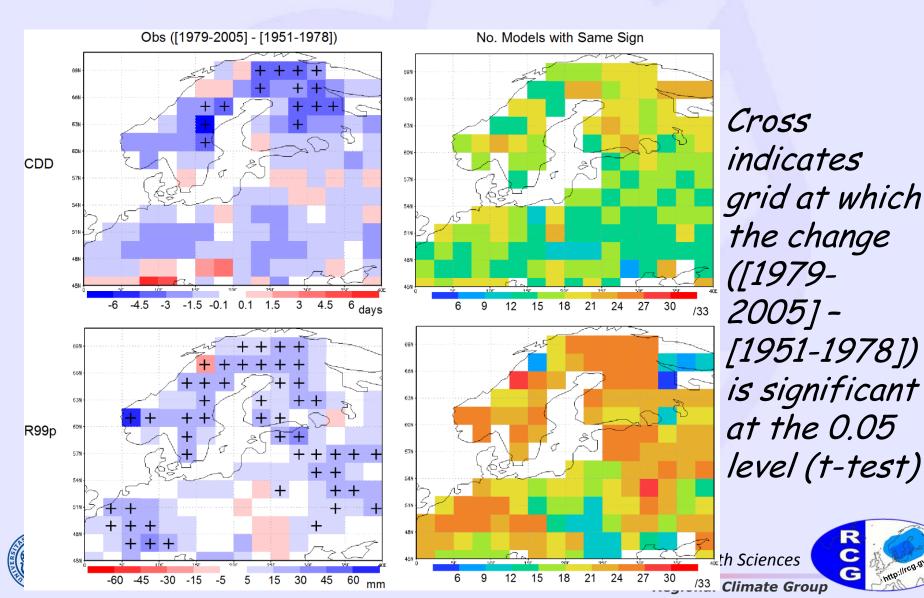

Observed change: [1979-2005] - [1951-1978]

Black lines indicate the regions where the change is significant at the 0.05 level (t-test)

1st EOF pattern

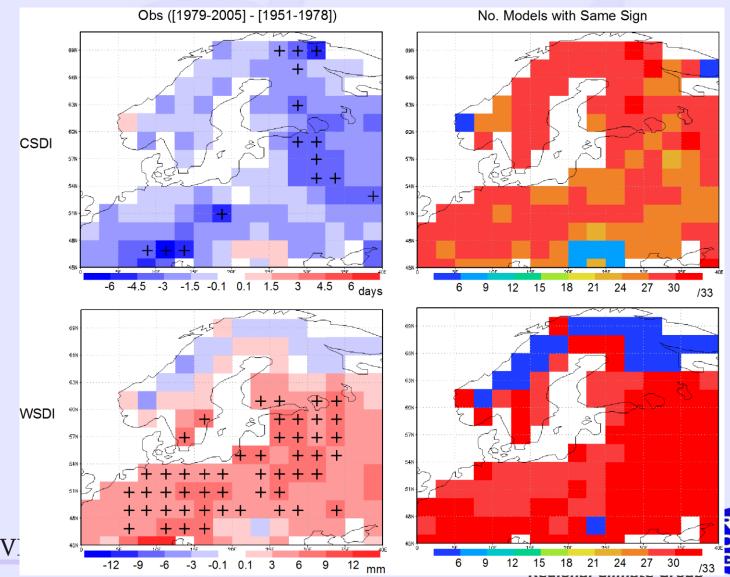
Explained variances for the first 3 EOFs (%) UNIVERSITY OF GOTHENBURG

	CDD	R99p	CSDI	WSDI			
EOF1	14.8	9.2	39.0	37.1			
EOF2	9.7	6.4	12.1	12.5			
EOF3	5.9	4.9	7.0	8.5			


14

;e

Top five models in terms of different annual statistical indicators


	Rank	1	2	3	4	5
CDD	Bias	CMCC-CESM	CanESM2	MIROC5	CMCC-CMS	CNRM-CM5
	RMSD	MRI-ESM1	CESM1-CAM5	MRI-CGCM3	ACCESS1-3	CESM1- FASTCHEM
	Cor	MRI-ESM1	MRI-CGCM3	IPSL-CM5A-MR	ACCESS1-3	CESM1-CAM5
	Bias	inmcm4	IPSL-CM5A-LR	BNU-ESM	MIROC-ESM	CanESM2
R99p	RMSD	MRI-ESM1	MRI-CGCM3	CESM1-BGC	CESM1- FASTCHEM	MIROC4h
	Cor	MRI-ESM1	MRI-CGCM3	CESM1-BGC	CESM1- FASTCHEM	MIROC4h
	Bias	CSIRO-Mk3.6.0	CMCC-CMS	HadCM3	CanESM2	MPI-ESM-MR
CSDI	RMSD	IPSL-CM5B-LR	MIROC4h	bcc-csm1-1	HadGEM2-CC	MRI-ESM1
	Cor	GFDL-ESM2G	IPSL-CM5B-LR	MIROC4h	bcc-csm1-1	HadGEM2-CC
WSD I	Bias	MPI-ESM-P	CESM1- FASTCHEM	ACCESS1-3	MPI-ESM-LR	GFDL-ESM2G
	RMSD	inmcm4	GFDL-ESM2G	MPI-ESM-LR	MRI-CGCM3	HadGEM2-CC
	Cor	HadGEM2-CC	ACCESS1-0	HadGEM2-ES	CESM1-CAM5	GFDL-CM3
	UNIVEI	RSITY OF GO	THENBURG	Depa	rtment of Earth Scie	G http://rcs

Number of models have the same sign for the change of extreme indices

16

Number of models have the same sign for the change of extreme indices

Conclusion

- CDD significantly decreased in the northern part of GBS with the significantly increased extreme precipitation; Cold events significantly decreased in the east and southwest of GBS and warm events significantly increased over middle to south of GBS;
- The observed climatology of precipitation extremes can be reasonably reproduced by multi-model ESM while that of temperature extremes is poorly reproduced;
- Most models can capture the increased extreme precipitation over northern part of GBS.

UNIVERSITY OF GOTHENBURG

Department of Earth Sciences

Reference

- Donat, M. G., et al. (2013), Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50150.
- Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201.

UNIVERSITY OF GOTHENBURG

Department of Earth Sciences

