Data Management – (Baltic) Large Marine Ecosystem View

Bärbel Müller-Karulis, Baltic Sea Regional Project Productivity Coordination Center

Baltic Sea Regional Project

- Goal: implement ecosystem approach to management of in the Baltic
- GEF funding 2003 2006, continuation applied for
- LME modules: integrated view of marine ecosystems

WKIAB

ICES/BSRP/HELCOM Workshop on Developing a Framework for Integrated Assessment for the Baltic Sea

1-4 March 2006 Tvärminne, Finland

Indicator based ecosystem description

- Indicator: time series that describes a characteristic ecosystem state variable or ecosystem process
- Time series covering 1973 2004
- Climate and physics: temperature, ice cover, salinity (bottom, intermediate, surface), inflow index, oxygen
- Nutrients: DIN, DIP (winter values, bottom, below halocline, surface), nutrient loads
- Phytoplankton: chlorophyll a, biomass of species groups, Secchi depth (spring, summer)
- Zooplankton species biomass
- Fish stock indexes (sprat, herring, cod, flounder, salmon)
- Fishing mortality

Trial assessment database

- 75 biotic and abiotic variables for the Central Baltic
 - **>** 18 fish
 - ➤ 9 zooplankton
 - > 17 phytoplankton
 - > 12 nutrients
 - **➤** 19 hydroclimatic
- 31 biotic and abiotic variables for the Gulf of Riga
 - > 4 fish
 - ➤ 13 zooplankton
 - > 4 phytoplankton
 - > 4 nutrients
 - **>** 6 hydroclimatic

Ecosystem stable states

Baltic Proper

Gulf of Riga

Pattern of e

8.0

Dominant processes

Baltic Proper

- Temperature and salinity changes
- Changes in fish stocks
- Inflow dynamics are second strongest signal
- Nutrient dynamics follow inflows, mask eutrophication signal
- Weak relationship nutrients and phytoplankton (?)

Gulf of Riga

- Temperature and salinity changes
- Changes in herring stock
- Impact of eutrophication, but decoupled from nutrient loads (long residence time of DIP)
- Summer chlorophyll a responds to DIP
- Top down effects herring zooplankton

Integrated assessment summary

- Changes on all trophic levels!
- relationships between temperature/salinity (oxygen) and fish and zooplankton variables
- no consistent relationships between nutrient and phytoplankton variables
- systems to a large degree hydrographydriven which defines the carrying capacity
- fishing and internal processes modify the ecosystem structure

Lessons learned for data management

- Aggregation of raw data into meaningful indicators is time consuming
- Pre-processed indicators are not readily available
- Biological data (e.g. phytoplankton biomass, zoobenthos data) is difficult to access
- Long-term time series (> 30 years) are rare
- Change in data source and/or data processing protocol leads to inconsistent indicators

integrated assessment work flow should be based on preprocessed indicators aggregated from raw data by expert groups

Indicator database

- Provide user friendly, timely (web-) access to information
- Implement a high degree of quality control
- Increase the efficiency of assessment and environmental research
- Attract data contributors besides obligatory data submitters (research data)
- Respect intellectual property rights
- Assure database sustainability

Implement web-based clearing house

Indicator clearinghouse Indicator submission Indicator originator - indicator originator - metadata - short description - indicator time - underlying data source series - information on quality Web list of indicators by assurance categories (with short description and link to metadata) - Climate - Oceanography - Nutrients - Phytoplankton - Fish - etc. Registered Indicator download request user user information - intended use - clearinghouse contributions - evaluation of clearinghouse and data received

Conclusions

- Archiving and management of raw data is important
- Efficient assessment relies on quality controlled indicators
- Access to aggregated indicators would improve work efficiency

