

Validation and Model Weighting for PRUDENCE and ENSEMBLES Simulations

Ole B. Christensen DMI

Key Messages

- PRUDENCE and ENSEMBLES (RT2b and RT3)
- PRUDENCE: ANOVA analysis of bias sources
- ENSEMBLES aim: Probabilistic climate change scenarios; this means weighting
 - Status at the moment: Validation of ERA40based experiments; new observational gridded data set came out recently
 - Weighting: Added value by RCM only, or realism of fields/physical processes/weather
- Some examples of the work on weighting of models

PRUDENCE GCM-RCM Matrix

W		CNRM	DMI	ETH	GKSS	НС	ICTP	KNMI	MPI	SMHI	UCM
	A2+HadAM3H		3	1	1	3	1	1	1	1	1
	A2+ECHAM4		1							1	
	A2+ARPEGE3	1									
L	B2+HadAM3H					1	1			1	1
a	B2+ECHAM4		1							1	
ېر کېکې DMi	B2+ARPEGE3	3									

ENSEMBLES GCM-RCM Matrix

Global model Regional model	МЕТО-НС	MPIMET	IPSL	CNRM	NERSC	CGCM3	Total number
METO-HC	1950-2100 [£]	1950-2100					2 (4)
MPIMET		1950-2100	1950-2050*				2
CNRM				1950-2050			2
DMI		1950-2100		1950-2050*			2
ETH	1950-2050						1
KNMI	MI 1950-2050						1
ІСТР		1950-2050					1
SMHI	1950-2050				1950-2050*		2
UCLM	1950-2050						1
C4I		1950-2050					1
GKSS**			1950-2050*				1
Met.No**					1950-2050*		1
CHMI * *				1950-2050*			1
OURANOS**						1950-2050*	1
Total (1950-2050)	4 (6)	6	2	3	2	1	18

RCM 25km: In addition ERA40 simulations available

DMi

57

PRUDENCE domains (Rockel-boxes)

Model bias

Jacob et al. 2007

HIRHAM-50 HIRHAM-25 HIRHAM-12 CHRM CLM HadRM3H RegCM RegCM RegCM HadRM3H RegCM RegCM RCAO-44 RCAO-22 PROMES HadAM3H ARPEGE Fnsemble

HIRHAM-50 HIRHAM-25 HIRHAM-12 CHRM CLM HadRM3H RegCM RegCM RegCM RegCM RACMO HIRHAM.no REAO-44 RCAO-44 RCAO-22 PROMES HadAM3H ARPEGE Ensemble

Climate change

Christensen % 2002 Reacon RegCM RegC

HIRHAM-50 HIRHAM-25 HIRHAM-25 HIRHAM-12 CHRM CLM HadRM3H RegCM RegCM RegCM RegCM RegCM RegCM RedCM RCAO-50 RCAO-50 RCAO-50 RCAO-51 RCAO-50 RCA

Temperature change – sources of uncertainty

SEMBLES

DJF

Depends on driving model

Also on RCM and scenario

Déqué et al. 2007

Precipitation change – sources of uncertainty

NSEMBLES

 Note that we compare grid averages with point observations

Normalized Probability Density Functions (PDFs) can be used to show the range and intensity of precipitation

Overlap of normalized area ~90%

-Note that we compare grid averages with point observations

A skill score metric –Prerequisite for probabilistic statements

NSEMBLES

FIG. 3. Diagrams of modeled vs observed PDF illustrating the total skill score in (a) a near-perfect skill score test (0.9) and (b) a very poor skill score (0.02). Perkins et al., J. Clim., 20, 2007

DMİ

Observations, models and regions

- Data:
- **ECA** Observations from set are used
- 8 ENSEMBLES RCMs that have hoop rup at 25 km are included

8 ENSEMBLES RCMs

- Binning of data in 0.5K (mm/day) intervals
- Calculation of skill scores for each ECA station, no adjustment due to differing altitudes between model and observations
- Skill scores for all available stations within 8 areas are averaged (In each area only model grid points with a land fraction larger than 0.9 are included)

Robustness

		Full year - 1 st rank [%]									
	Model	BI	IP	FR	ME	SC	AL	MD	EA	EUx	
	HIRHAM_D	0.14									
	CHRM	19.64									
	CLM	4.31	11.01	76.80	4.34	19.78	2.90	27.37		89.94	
	HadRM	23.18	88.84	16.95	24.07	72.34	69.10	0.75	8.01	10.06	
	RegCM	17.06		6.06	71.59				91.99		
	RACMO	15.79	0.15			7.88	21.45				
	HIRHAM_M	1.70		0.05			0.07				
	REMO	10.63									
	RCAO	6.51									
	PROMES	1.04		0.14			6.48	71.88			

10,000 Monte Carlo bootstrap trials were performed for all ten models in each region and the percentage of occurrences of first place ranking is recorded in columns 2 through 10.

So, looking at a single variable, the skill score seems rather robust

Summary

- This is still preliminary work. Perspectives for assigning weights to individual RCMs are under exploration.
 - Preliminary results indicate that the present generation of European RCMs are of comparable quality, so weights that seriously up- or down-grade individual models are currently not identified
 - Different models have different kinds of errors
- Ideas to expand on the GCM/RCM matrix beyond its present stage using statistical approaches are being pursued
- Some open questions: Weighting schemes based on model performance, and hence PDFs, can be constructed, BUT
 - What are the relevant variables to use? Anything about climate sensitivity in the weights? Realism of processes?
 - Should we use the same weights for different target variables? The role of the RCM is different...
 - What to do with GCM/RCM combinations? w(RCM)·w(GCM) or w(GCM,RCM) ?

Available data

- PRUDENCE public data archive <u>http://prudence.dmi.dk</u>
 - A2 and B2 time slice experiments (1961-1990 vs. 2071-2100).
 - 21 fields, many experiments, around 500GB data. netCDF and OpenDAP interface
- ENSEMBLES RT3/RT2b data archive will soon be public at <u>http://ensemblesrt3.dmi.dk</u>
 - ERA-40 reanalysis in 50km and 25km resolution
 - Also 100-year or 150-year transient downscaling runs in 25km resolution, 1950-2050 or 1950-2100.
 - Same interface, around 120 daily fields, 7TB data and still growing

PRUDENCE biases as a function of percentile

Biases in extremes larger than biases in means/medians

PRUDENCE experience shows biases in the 5th percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than ±3°C (±5°C) when averaged over most (all) European sub-regions.

Results are highly dependent on choice of RCM

JJA, T_{2m}max, biases at different percentiles

- 10 RCMs in the common
 PRUDENCE
 experiment:
- One GCM (HadAM3H)
- Same time period (1961-1990)

Kjellström et al., 2007 Climatic Change

The regional added value (ICTP)

- On monthly time scale compare with CRU
- A large scale signal was first identified by carrying out a 5x5 grid point running spatial average of the PRUDENCE fields. This yields a signal roughly at a scale of 250 km, which is typical of the ENSEMBLES GCMs.
- The large scale signal is then subtracted from the full field. The anomaly signal derived in this way constitutes the mesoscale signal.