A coupled waveatmosphere RCM (RCA-WAM)

Anna Rutgersson Alvaro Semedo Björn Carlsson Uppsala University

Ralf Döscher Anders Ullerstig Barry Broman SMHI

Why introduce a wave model?

We are interested in the waves.
 Improved forecast/description of the waves.

Waves influence the atmosphere and thus the RCM simulation.

Improved description of the atmosphere as well as air-sea exchange.

Two very different wave regimes:

Growing waves (rough sea, slower waves).

Decaying waves (swell, faster waves).

These situations influences the atmosphere differently

Growing waves, two-way coupling: Evolution of synoptic scale systems. Improved forecast scores in the ECMWFsystem (Jansen et al) Improvement using a coupled system is larger for the waves than for the atmospheric parameters. Evolution of Polar lows: More intense polar lows Improved mean sea level pressure when including the wave model. Sea state dependent heat and humidity fluxes (scalars?).

ECMWF scores, atmosphere

Europe. Anomally correlation rms error 100 90 160 80 14070 12060 Ж. -50 80 40 60 30 2040 213 (COUP/1.5) 10 213 CTR Ö. Forecast Day Forecast Day North Atlantic Anomaly correlation rms error 100180 90 180 80. 14070 12060 100 % 50 80 40 60 30 2040 10 20 0 Forecast Day Forecast Day

500 hPa geopotential height forecast verification (June - July period, 21 Cases)

Figure 14: Scores of 500 mb height field for Europe and North Atlantic for the full June-July 1996 period.

From Jansen et al (2001)

ECMWF scores, waves

Figure 13: Wave height scores for June-July 1996 period in the Southern Hemisphere. Verification is against own analysis.

From Jansen et al (2001)

Evolution of a hurricane, ECMWF

Féday 26 August 2005 COUTO SCIMM F. Forecast 1+64 V T. Monday 29 August 2005 13UTO Surface: " Mean can level pressure

ECMWF Analysis VT:Monday 29 August 2005 12UTC Surface: "Mean sea level pressure

Pikiey 26 August 2005 (OUT 0 ECMWF: Forecast 1+64 VT: Minutey 20 August 2005 (2UT 0 Surface: "Wear centered pressure

From Jansen et al (2007)

Evolution of a hurricane, ECMWF

Friday 26 August 2005 DOUTO E CNWF | Ferenaut I+94 VT: Microhy 29 August 2005 120TO Surface: "significant wave height |

ECMWF Analysis VT:Tuesday 30 August 2005 12UTC Surface: "significant wave height

Pilday 26 August 2005 000TC ECMWF. Forecast 1-64 VT: Monday 29 August 2005. (20TC Surlace: "Highlicent wave height

From Jansen et al (2007)

Polar lows

Uncoupled

Coupled

From Kolzow and Saetre (2007)

Important

Impact of waves (improvement when including the waves). Larger the higher resolution we have. Of special interest for higher resulution RCM.

 Impact on extreme events significant – impact of overall scores limited.

Swell waves new effects:

 Decaying waves (swell, faster waves). Strongly influences the atmosphere.
 Lower drag – less mixing.
 Wind gradient changed.
 Structure of turbulence changed.

 IPCC indicates that swell waves increases in a changes climate.

Non-dimensional wind gradient

Negative wind gradient at 10 m indicate a low level wind maxima.

10m

Momentum flux near lower boundary, u´w´/u*²

Increase in swell waves since 1950:

WAM – a wave spectral model

- The sea state is described by a 2D wave energy spectrum (25 frequencies vs 24 direction bins) by solving the spectral energy-balance equation:

 $F(f,\theta,\varphi,\lambda) = S_{in} + S_{nl} + S_d$

- First order up wind finite difference scheme
- Global or regional
- Forced by 10 m wind field
- Deep or shallow waters

models - WAM

WAM – model output

2D spectra at each (chosen) grid point

models – WAM and RCA

Preliminary swell results RCA-WAM

increased wind speed
reduced surface friction
reduced boundary layer height

Other RCM-wave coupled projects: FMI: HIRLAM-WAM Improved surface winds Improved wave forecast Met.no: HIRLAM-WAM Polar lows RCA-WAM-RCO

Conclude:

Growing sea effect:
 Well documented improvement in two-way coupled systems, especially for relatively high resolution.

Swell effect

New theories should be included in coupled systems, have the potential impact on atmospheric mixing and secondary parameters as well as air-sea exchange.

<u>Östergarnsholm swell influences - results</u>

Variable *roughness lenght* (z_0) and sea drag (drag coeficient C_D) as a function of wave age (Jansen 1989, 1991), under swell conditions (Larsén 2004)

