

Baltic-C: Building predictive capability regarding the Baltic Sea organic/inorganic carbon and oxygen systems

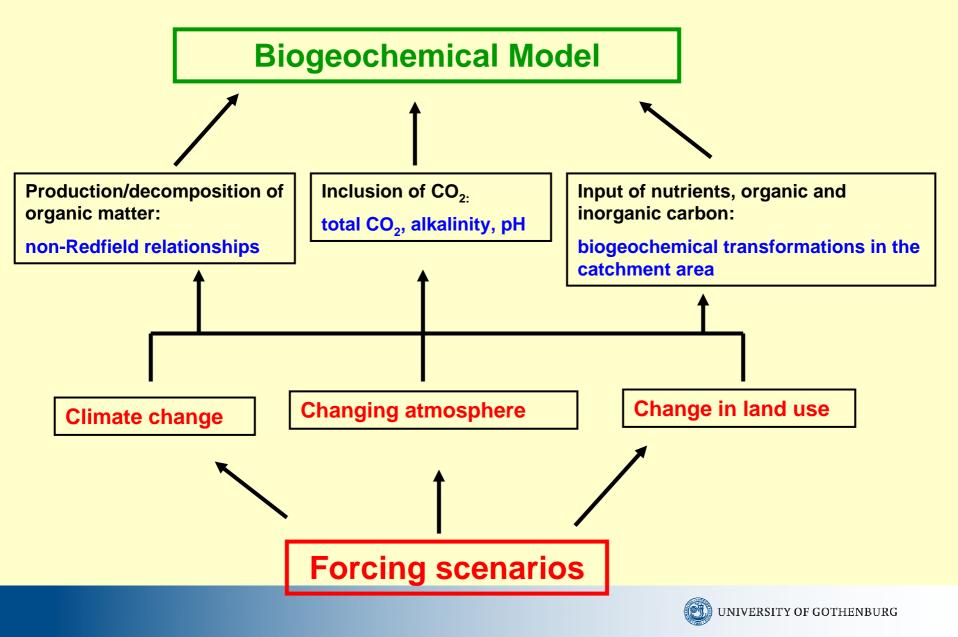
Baltic-C kick off November 2008

The goal:

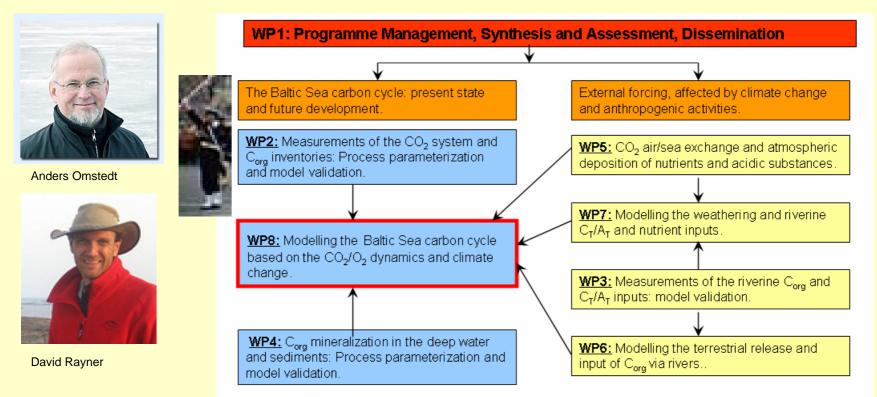
Building predictive capability regarding the Baltic Sea organic/inorganic carbon and oxygen systems

that:

- 1. explicitely includes the formation of organic matter and the interaction with the CO₂ system;
- formation organic carbon is not sufficiently characterized by nutrient consumption, consistency with the CO₂ budget must be achieved;
- the CO₂ system controls the biogenic formation of CaCO₃;
- the CO₂ system determines whether the Baltic Sea is a sink or source for atmospheric CO₂;
- the cycling of many trace elements depends on both the availability of particulate organic carbon and pH;


2. integrates the relevant processes in the catchment area;

- the riverine input of organic carbon, total CO₂, alkalinity and nutrients constitutes the major chemical forcing for the Baltic Sea carbon cycle;


- 3. is designed to simulate future changes of the Baltic Sea carbon cycle and its ecological and biogeochemical implications;
- "ocean acidification" by inceasing atmospheric CO₂;
- changing alkalinity input due to increasing CO₂ and acidic precipitation;
- increasing organic matter input due to climate change;
- changes in the nutrient inputs due to antropogenic activities;

What is new?

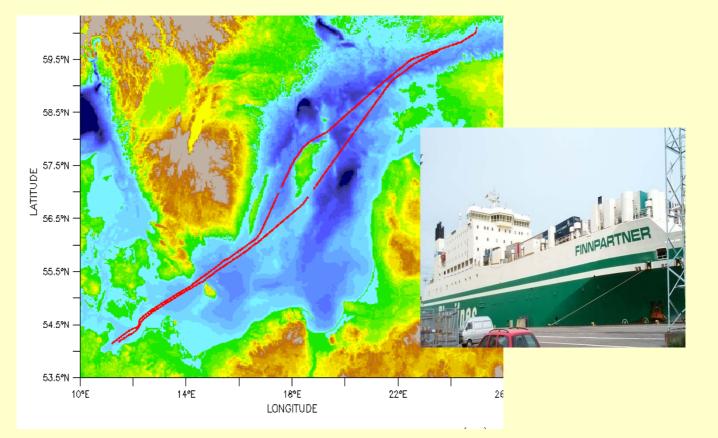
WP1. Programme management, synthesis and assessment, dissemination (Anders Omstedt, University of Gothenburg, Sweden, and participant code 1).

FINNISH METEOROLOGICAL INSTITUTE

WP1. Programme management, synthesis and assessment, dissemination (Anders Omstedt, University of Gothenburg, Sweden, and participant code 1).

- Task 1.1: Programme management.
- **Task 1.2:** Workshop and estimated environmental economics aspects. Due to budget cuts this workshop will be organized outside the Baltic-C program and at a later phase.
- *Task 1.3:* Synthesis and assessment of Baltic Sea CO₂ system.
- Task 1.4: Dissemination.

WP2. Measurements of the Baltic Sea CO₂ system and carbon inventories (Bernd Schneider, Baltic Sea Research Institute, Germany; participant code 2).



Bernd Schneider

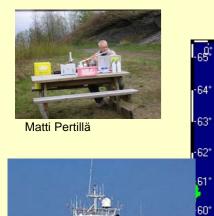
Anne Loeffler

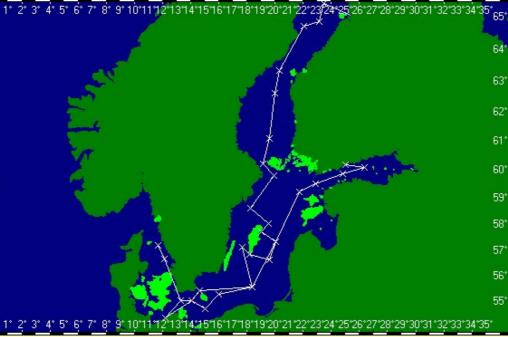
Bernd Sadkowiak

LUND

WP2. Measurements of the Baltic Sea CO₂ system and carbon inventories (Bernd Schneider, Baltic Sea Research Institute, Germany; participant code 2).

- **Task 2.1:** Recording surface water pCO₂ and O₂ using a fully ۲ automated measurement system deployed on VOS "FINNMAID".
- **Task 2.2:** Determining the organic/inorganic carbon and oxygen ۲ pools in different Baltic Sea sub-regions.
- Task 2.3: Compiling and evaluating CO₂/carbon data collected ۲ by previous research and monitoring programmes.





WP3. Inventory of river runoff data (Matti Pertillä, Finnish Institute of Marine Research, Finland; participant code 3).

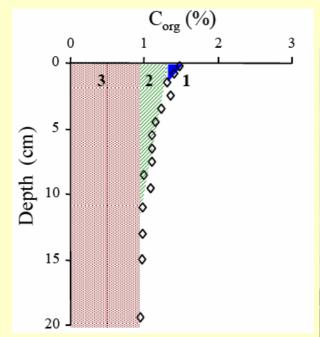
Baltic-C cruise 12.1 - 7.2.2009

59°

58°

WP3. Inventory of river runoff data (Matti Pertillä, Finnish Institute of Marine Research, Finland; participant code 3).

- **Task 3.1:** Evaluating the river input concentrations from existing monitoring and research data.
- Task 3.2: Evaluating river concentrations from marine data.
- Task 3.3: Measuring input concentrations.


WP4. Mineralization of organic material, deepwater-sediment interaction (Janusz Pempkowiak, Institute of Oceanology, Polish Academy of Sciences, Poland; participant code 4).

Janusz Pempkowiak

Karol Kuliński

WP4. Mineralization of organic material, deepwater-sediment interaction (Janusz Pempkowiak, Institute of Oceanology, Polish Academy of Sciences, Poland; participant code 4).

- **Task 4.1:** Establishing remineralization rate constants for organic matter based on existing data.
- **Task 4.2:** Collecting new experimental data to improve and extend the rates provided in task 4.1
- **Task 4.3:** Establishing loads of carbon species passing across the sediment–water interface over the entire Baltic.

Task 4.4: Determining remineralization rate constants at the sediment surface and in the water column, based on CO_2 concentrations in Gotland Sea deep water

WP5. Atmospheric forcing (air–sea interaction, scenarios) (Anna Rutgersson, Uppsala University, Sweden; participant code 5).

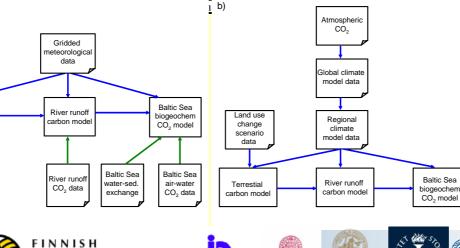
Annna Rutgersson

Gotland

Björn Carlsson

Atmospheric

CÔ₂


Terrestrial

carbon model

DOC and

CO₂ flux

data

UPPSALA

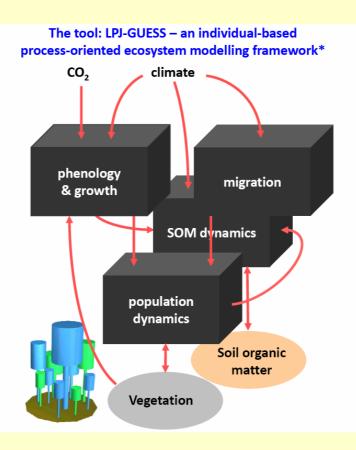
UNIVERSITET

LUND

WP5. Atmospheric forcing (air-sea interaction, scenarios) (Anna Rutgersson, Uppsala University, Sweden; participant code 5).

- Task 5.1: Air–sea interaction. •
- Task 5.2: Acid deposition. ۲
- **Task 5.3:** Climate scenarios and land-use data lacksquare

STITUTE



WP6. Modelling the organic matter input from terrestrial vegetation and soils (Benjamin Smith, Lund University, Sweden; participant code 6).

Benjamin Smith

UPPSALA

UNIVERSITET

LUND

FINNISH

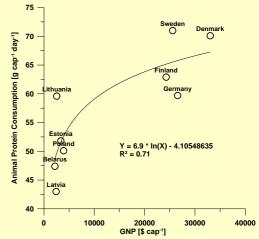
INSTITUTE

METEOROLOGICAL

WP6. Modelling the organic matter input from terrestrial vegetation and soils (Benjamin Smith, Lund University, Sweden; participant code 6).

- **Task 6.1:** Terrestrial carbon model setup, validation, and coupling to the river runoff carbon model (WP7).
- **Task 6.2:** Modelling present and past changes in vegetation structure and functioning and in dissolved organic carbon export.
- **Task 6.3:** Modelling possible future changes in vegetation structure and functioning and in dissolved organic carbon export.

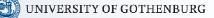
WP. 7. Modelling the input A_T , C_T , C_a , and C_{org} from all rivers to the Baltic Sea (Christoph Humborg, Stockholm University, Sweden; participant code 7).



Christoph Humborg

CSIM model

87 major catchments and 21 costal strips



FINNISH METEOROLOGICAL INSTITUTE

LUND

WP. 7. Modelling the input A_T , C_T , C_a , and C_{org} from all rivers to the Baltic Sea (Christoph Humborg, Stockholm University, Sweden; participant code 7).

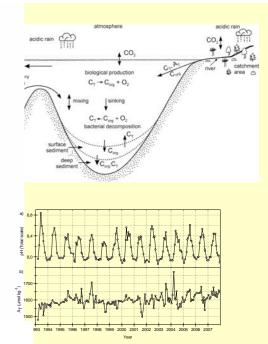
- **Task 7.1:** Compilation of river chemistry and hydro-meteorological forcing data.
- **Task 7.2:** Model calibration and validation of A_T , C_T , Ca and Corg inputs.
- Task 7.3: Scenario analyses of A_T, C_T, Ca and C_{org} inputs as a function of land cover change and changes in river discharge as an effect of regional climate change.
- **Task 7.4:** Scenario analyses on effects of regional climate change on N and P fluxes from 83 major watersheds forming the Baltic Sea catchment.
- **Task 7.5:** Scenario analyses on changes in land cover types (agricultural vs. forest vs. wetlands) and land use patterns (changes in fertilizer use and livestock density) on N and P fluxes from 83 major watersheds forming the Baltic Sea catchments.

ROLOGICAL

WP8. Modelling the Baltic Sea physical-biogeochemical system based on the CO_2/O_2 dynamics and climate change (Anders Omstedt, University of Gothenburg, Sweden, and participant code 1).

Moa Edman

Erik Gustafsson


Bothnia Bay 63°N Bothnia Sea Archipelago Finland Gulf 57°N BY1: Öresund E Gotland Basin Bornhol Arkona Basir Basir 54°N Belt Sea 16⁰F 24°E

UPPSALA

UNIVERSITET

ETEOROLOGICAL

PROBE-Baltic model

WP8. Modelling the Baltic Sea physical-biogeochemical system based on the CO_2/O_2 dynamics and climate change (Anders Omstedt, University of Gothenburg, Sweden; participant code 1).

- **Task 8.1:** Modelling present and past changes of the Baltic Sea CO₂ system.
- Task 8.2: Modelling possible future changes in the Baltic Sea CO₂ system.

