HYACINTS

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales

Project leader:

Professor, Dr. Scient Jens Christian Refsgaard GEUS

Institutions

- Geological Survey of Denmark and Greenland (GEUS)
- Danish Meteorological Institute (DMI)
- Institute of Geography and Geology, KU
- Institute of Geology, AU
- DHI
- GRAS (Geographic Resource Analysis & Science)
- Watertech \rightarrow Birch & Krogboe \rightarrow ALECTIA
- Odense Water
- Copenhagen Energy
- Public Utilities of Aarhus, Water and Waste Water
- Environmental Centre Odense
- Environmental Centre Roskilde

Volume and timing

- Total budget of 25.2 mill Dkr ~ 3.4 mill EURO
- 15 mill Dkr ~ 2 mill EURO from research council
- Period: 2008 2012
- 5 PhD's and 3 Post Docs

Background

- Presently: Climate model → Hydrological model
- No coupling between hydrological and climate models
 - Current hydrological module very simple: Errors in feedback (LE, H, T_s)
- Resolution of hydrological system
 - Less than e.g. 50 km (climate model grid size)
- Bias in climate model results
- No quantification of uncertainty

Objective

- To assess the effects of climate change on water resources at both regional and local scales
 - Higher precision
 - Quantification of uncertainty

Work packages

- Coupling of HIRHAM and MIKE SHE model codes
- Hydrological change
- Scaling of hydrological models
- Uncertainty

Coupling of HIRHAM and MIKE SHE model codes

• Objective:

- To develop a full dynamic coupling of a climate model and a distributed physically based hydrological model code
- Contents:
 - Exchange of (P, T_a , V_w , R) \leftrightarrow (LE, H, T_s)
 - Different platforms (Workstation/Windows)
 - OpenMI coupling

Hydrological change

- Objectives:
 - To establish a coupled climate-hydrological model for the entire Denmark
 - New methods for estimation of precipitation from remote sensing data (mountainous regions)
- Contents:
 - Coupling of DK-model (MIKE SHE) and regional climate model (HIRHAM)
 - Geostatistical downscaling procedures based on measured data (50 km \rightarrow 1 km)
 - Downscaling of remote sensing data

Scaling of hydrological models

- Objectives:
 - To develop grid refinements methods
 - To develop methodologies for downscaling of complex geological environments
- Contents:
 - Dynamic coupling of regional and local MIKE SHE model (OpenMI)
 - Alternative conceptual geological models versus alternative discretization methods

Uncertainty

- Objectives:
 - To assess the uncertainties related to prediction of climate change effects
- Contents:
 - Climate model uncertainty: emission scenarios; climate model; downscaling method
 - Hydrological model uncertainty: model scale;
 model structure (geological interpretations); value of geological information (mapping) on uncertainty

Expected main project results

- Coupled code for simulating hydrological change
- Coupled climate-hydrological model for Denmark (more accurate predictions)
- Downscaling procedures
- Assessment of climate change in data sparse (mountainous) catchments
- Quantification of uncertainties in hydrological change predictions

Precipitation (annual) using climate model

Change in groundwater level

